{"title":"SpK: A fast atomic and microphysics code for the high-energy-density regime","authors":"A.J. Crilly , N.P.L. Niasse , A.R. Fraser , D.A. Chapman , K.W. McLean , S.J. Rose , J.P. Chittenden","doi":"10.1016/j.hedp.2023.101053","DOIUrl":null,"url":null,"abstract":"<div><p>SpK is part of the numerical codebase at Imperial College London used to model high energy density physics (HEDP) experiments. SpK is an efficient atomic and microphysics code used to perform detailed configuration accounting calculations of electronic and ionic stage populations, opacities and emissivities for use in post-processing and radiation hydrodynamics simulations. This is done using screened hydrogenic atomic data supplemented by the NIST energy level database. An extended Saha model solves for chemical equilibrium with extensions for non-ideal physics, such as ionisation potential depression, and non thermal equilibrium corrections. A tree-heap (treap) data structure is used to store spectral data, such as opacity, which is dynamic thus allowing easy insertion of points around spectral lines without a-priori knowledge of the ion stage populations. Results from SpK are compared to other codes and descriptions of radiation transport solutions which use SpK data are given. The treap data structure and SpK’s computational efficiency allows inline post-processing of 3D hydrodynamics simulations with a dynamically evolving spectrum stored in a treap.</p></div>","PeriodicalId":49267,"journal":{"name":"High Energy Density Physics","volume":"48 ","pages":"Article 101053"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Density Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574181823000198","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 3
Abstract
SpK is part of the numerical codebase at Imperial College London used to model high energy density physics (HEDP) experiments. SpK is an efficient atomic and microphysics code used to perform detailed configuration accounting calculations of electronic and ionic stage populations, opacities and emissivities for use in post-processing and radiation hydrodynamics simulations. This is done using screened hydrogenic atomic data supplemented by the NIST energy level database. An extended Saha model solves for chemical equilibrium with extensions for non-ideal physics, such as ionisation potential depression, and non thermal equilibrium corrections. A tree-heap (treap) data structure is used to store spectral data, such as opacity, which is dynamic thus allowing easy insertion of points around spectral lines without a-priori knowledge of the ion stage populations. Results from SpK are compared to other codes and descriptions of radiation transport solutions which use SpK data are given. The treap data structure and SpK’s computational efficiency allows inline post-processing of 3D hydrodynamics simulations with a dynamically evolving spectrum stored in a treap.
期刊介绍:
High Energy Density Physics is an international journal covering original experimental and related theoretical work studying the physics of matter and radiation under extreme conditions. ''High energy density'' is understood to be an energy density exceeding about 1011 J/m3. The editors and the publisher are committed to provide this fast-growing community with a dedicated high quality channel to distribute their original findings.
Papers suitable for publication in this journal cover topics in both the warm and hot dense matter regimes, such as laboratory studies relevant to non-LTE kinetics at extreme conditions, planetary interiors, astrophysical phenomena, inertial fusion and includes studies of, for example, material properties and both stable and unstable hydrodynamics. Developments in associated theoretical areas, for example the modelling of strongly coupled, partially degenerate and relativistic plasmas, are also covered.