How similar is similar enough? Job profile similarity benchmarks using occupational information network data

IF 2.6 4区 管理学 Q3 MANAGEMENT
Joseph D. Abraham, Dawn D. Lambert, Michael C. Mihalecz, Monica D. Elcott, Hannah S. Asbury, Penelope C. Palmer
{"title":"How similar is similar enough? Job profile similarity benchmarks using occupational information network data","authors":"Joseph D. Abraham,&nbsp;Dawn D. Lambert,&nbsp;Michael C. Mihalecz,&nbsp;Monica D. Elcott,&nbsp;Hannah S. Asbury,&nbsp;Penelope C. Palmer","doi":"10.1111/ijsa.12430","DOIUrl":null,"url":null,"abstract":"<p>Job comparison research is critical to many human resources initiatives, such as transporting validity evidence. Job analysis methods often focus on critical attribute (e.g., tasks, work behaviors) overlap when assessing similarity, but profile similarity metrics represent an alternative or complementary approach for job comparisons. This paper utilizes Occupational Information Network (O*NET) data to establish a distribution of job profile correlations across all job pairs for five attributes – generalized work activities, knowledge, skills, abilities, and work styles. These correlations represent effect sizes, or degree of shared variance between jobs. Practitioners may reference these correlational distributions as benchmarks for gauging the practical significance of the observed degree of similarity between two jobs of interest compared to the broader world of work.</p>","PeriodicalId":51465,"journal":{"name":"International Journal of Selection and Assessment","volume":"31 3","pages":"469-476"},"PeriodicalIF":2.6000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Selection and Assessment","FirstCategoryId":"91","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijsa.12430","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

Abstract

Job comparison research is critical to many human resources initiatives, such as transporting validity evidence. Job analysis methods often focus on critical attribute (e.g., tasks, work behaviors) overlap when assessing similarity, but profile similarity metrics represent an alternative or complementary approach for job comparisons. This paper utilizes Occupational Information Network (O*NET) data to establish a distribution of job profile correlations across all job pairs for five attributes – generalized work activities, knowledge, skills, abilities, and work styles. These correlations represent effect sizes, or degree of shared variance between jobs. Practitioners may reference these correlational distributions as benchmarks for gauging the practical significance of the observed degree of similarity between two jobs of interest compared to the broader world of work.

相似到什么程度?使用职业信息网络数据的工作概况相似性基准
工作比较研究对许多人力资源举措至关重要,例如传递有效性证据。在评估相似性时,工作分析方法通常侧重于关键属性(例如,任务,工作行为)重叠,但概况相似性度量代表了工作比较的替代或补充方法。本文利用职业信息网络(O*NET)数据建立了所有工作对中五个属性(广义工作活动、知识、技能、能力和工作风格)的工作概况相关性分布。这些相关性代表了效应大小,或工作之间的共同差异程度。从业者可以参考这些相关分布作为基准,以衡量与更广泛的工作世界相比,两个感兴趣的工作之间观察到的相似性程度的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
31.80%
发文量
46
期刊介绍: The International Journal of Selection and Assessment publishes original articles related to all aspects of personnel selection, staffing, and assessment in organizations. Using an effective combination of academic research with professional-led best practice, IJSA aims to develop new knowledge and understanding in these important areas of work psychology and contemporary workforce management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信