Dynamics of Williamson Hybrid Nanofluid Over an Extending Surface with Non-Linear Convection and Shape Factors

IF 2.7 Q3 NANOSCIENCE & NANOTECHNOLOGY
Shikha Chandel, Shilpa Sood
{"title":"Dynamics of Williamson Hybrid Nanofluid Over an Extending Surface with Non-Linear Convection and Shape Factors","authors":"Shikha Chandel, Shilpa Sood","doi":"10.1166/jon.2023.2022","DOIUrl":null,"url":null,"abstract":"Combined effects of the magnetic field, heat source/sink, and homogeneous–heterogeneous chemical reaction on the three-dimensional fluid flow over a stretching sheet have been examined in this paper. For originality and practicality, the influence of non-linear convection on hybridised\n nanoparticles of titanium dioxide (TiO2) and silver (Ag) in the non-Newtonian engine oil (EO) are introduced into the governing equations, which are then dimension-free by utilizing appropriate transformations. Williamson fluid model has been employed to determine the rheological\n features of the considered fluid mixture. MATLAB inbuilt bvp4c solver and Keller box method are proposed for the numerical solution of current fluid theories. Physical elaboration of the graphs is given to recognize the influence on fluid flow and heat transport mechanism in different rising\n conditions. Based on results, the implication of magnetic field and Williamson parameters restrict the fluid flow for both nanofluid (TiO2/EO) and hybrid nanofluid (TiO2 + Ag/EO). Special case studies of the shape factor effect show more enhancement in heat transfer rate\n for cylindrically shaped nanoparticles 25.8162% followed by brick-shaped 20.3286% and spherical-shaped 17.0583%. This study will provide better insight into applications including aircraft refrigeration, lubrication, plastic processing, engine and generator cooling, and so forth.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Combined effects of the magnetic field, heat source/sink, and homogeneous–heterogeneous chemical reaction on the three-dimensional fluid flow over a stretching sheet have been examined in this paper. For originality and practicality, the influence of non-linear convection on hybridised nanoparticles of titanium dioxide (TiO2) and silver (Ag) in the non-Newtonian engine oil (EO) are introduced into the governing equations, which are then dimension-free by utilizing appropriate transformations. Williamson fluid model has been employed to determine the rheological features of the considered fluid mixture. MATLAB inbuilt bvp4c solver and Keller box method are proposed for the numerical solution of current fluid theories. Physical elaboration of the graphs is given to recognize the influence on fluid flow and heat transport mechanism in different rising conditions. Based on results, the implication of magnetic field and Williamson parameters restrict the fluid flow for both nanofluid (TiO2/EO) and hybrid nanofluid (TiO2 + Ag/EO). Special case studies of the shape factor effect show more enhancement in heat transfer rate for cylindrically shaped nanoparticles 25.8162% followed by brick-shaped 20.3286% and spherical-shaped 17.0583%. This study will provide better insight into applications including aircraft refrigeration, lubrication, plastic processing, engine and generator cooling, and so forth.
具有非线性对流和形状因子的Williamson混合纳米流体在扩展表面上的动力学
本文研究了磁场、热源/散热器和均相-非均相化学反应对拉伸片上三维流体流动的综合影响。为了新颖性和实用性,将非线性对流对非牛顿发动机机油中二氧化钛(TiO2)和银(Ag)混合纳米颗粒的影响引入到控制方程中,然后通过适当的变换使其无量纲。Williamson流体模型已被用于确定所考虑的流体混合物的流变特征。针对当前流体理论的数值求解,提出了MATLAB内置bvp4c求解器和Keller box方法。对图表进行了物理阐述,以识别不同上升条件下对流体流动和热传输机制的影响。基于结果,磁场和Williamson参数的影响限制了纳米流体(TiO2/EO)和混合纳米流体(TiO2+Ag/EO)的流体流动。形状因子效应的特殊案例研究表明,圆柱形纳米颗粒的传热率提高了25.8162%,其次是砖形纳米颗粒20.3286%和球形纳米颗粒17.0583%。这项研究将更好地了解飞机制冷、润滑、塑料加工、发动机和发电机冷却等应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanofluids
Journal of Nanofluids NANOSCIENCE & NANOTECHNOLOGY-
自引率
14.60%
发文量
89
期刊介绍: Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信