{"title":"Quantitative sheaf theory","authors":"W. Sawin, A. Forey, J. Fres'an, E. Kowalski","doi":"10.1090/jams/1008","DOIUrl":null,"url":null,"abstract":"We introduce a notion of complexity of a complex of \n\n \n ℓ\n \\ell\n \n\n-adic sheaves on a quasi-projective variety and prove that the six operations are “continuous”, in the sense that the complexity of the output sheaves is bounded solely in terms of the complexity of the input sheaves. A key feature of complexity is that it provides bounds for the sum of Betti numbers that, in many interesting cases, can be made uniform in the characteristic of the base field. As an illustration, we discuss a few simple applications to horizontal equidistribution results for exponential sums over finite fields.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2021-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/1008","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
We introduce a notion of complexity of a complex of
ℓ
\ell
-adic sheaves on a quasi-projective variety and prove that the six operations are “continuous”, in the sense that the complexity of the output sheaves is bounded solely in terms of the complexity of the input sheaves. A key feature of complexity is that it provides bounds for the sum of Betti numbers that, in many interesting cases, can be made uniform in the characteristic of the base field. As an illustration, we discuss a few simple applications to horizontal equidistribution results for exponential sums over finite fields.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.