{"title":"Effects of steady wave forces on course-keeping manoeuvres of full- and model-scale ships moving obliquely in short waves","authors":"R. Suzuki, Y. Tsukada, M. Ueno","doi":"10.1080/09377255.2022.2149094","DOIUrl":null,"url":null,"abstract":"ABSTRACT We investigated the effects of the steady wave force variations generated by oblique motions upon ship manoeuvre estimations, using a numerical simulation that incorporated only steady wave forces into a three-degrees-of-freedom conventional modular mathematical model in calm water. The investigation was conducted for a very large crude carrier undergoing course-keeping manoeuvres in regular short waves. The steady wave forces in the simulation were provided via two methods, depending on the experimental data and the presence or absence of a ship drift angle. The simulation was validated via a free-running model test; this involved various rudder effectiveness conditions for the ship model and full-scale ships, both with and without engine limits. Through this validation, we showed that the steady wave force variations generated by oblique motions are non-negligible when accurately estimating the manoeuvres of full-scale ships in short waves, although they are negligible for ship models.","PeriodicalId":51883,"journal":{"name":"Ship Technology Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ship Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09377255.2022.2149094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT We investigated the effects of the steady wave force variations generated by oblique motions upon ship manoeuvre estimations, using a numerical simulation that incorporated only steady wave forces into a three-degrees-of-freedom conventional modular mathematical model in calm water. The investigation was conducted for a very large crude carrier undergoing course-keeping manoeuvres in regular short waves. The steady wave forces in the simulation were provided via two methods, depending on the experimental data and the presence or absence of a ship drift angle. The simulation was validated via a free-running model test; this involved various rudder effectiveness conditions for the ship model and full-scale ships, both with and without engine limits. Through this validation, we showed that the steady wave force variations generated by oblique motions are non-negligible when accurately estimating the manoeuvres of full-scale ships in short waves, although they are negligible for ship models.