SECOND ORDER HANKEL DETERMINANTS FOR CLASS OF BOUNDED TURNING FUNCTIONS DEFINED BY SĂLĂGEAN DIFFERENTIAL OPERATOR

Hussaini Joshua, A. Adeniji, M. Mogbonju, M. Hameed
{"title":"SECOND ORDER HANKEL DETERMINANTS FOR CLASS OF BOUNDED TURNING FUNCTIONS DEFINED BY SĂLĂGEAN DIFFERENTIAL OPERATOR","authors":"Hussaini Joshua, A. Adeniji, M. Mogbonju, M. Hameed","doi":"10.21608/ejmaa.2023.303645","DOIUrl":null,"url":null,"abstract":". In this paper, a brief study of certain properties of bounded turning functions is carried out. Furthermore, bound to the famous Fekete - Szego functional H 2 (1) = | a 3 − ta 22 | , with t real and the Second Hankel Determinant H 2 (2) = | a 2 a 4 − a 23 | for functions of bounded turning of order β associated with Salagean differential operator are obtained using a succinct mathematical approach.","PeriodicalId":91074,"journal":{"name":"Electronic journal of mathematical analysis and applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic journal of mathematical analysis and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/ejmaa.2023.303645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. In this paper, a brief study of certain properties of bounded turning functions is carried out. Furthermore, bound to the famous Fekete - Szego functional H 2 (1) = | a 3 − ta 22 | , with t real and the Second Hankel Determinant H 2 (2) = | a 2 a 4 − a 23 | for functions of bounded turning of order β associated with Salagean differential operator are obtained using a succinct mathematical approach.
由sĂlĂgean微分算子定义的一类有界转动函数的二阶汉克尔行列式
. 本文对有界翻转函数的某些性质作了简要的研究。进一步,用简洁的数学方法得到了与Salagean微分算子相关的β阶有界转动函数的Fekete - Szego泛函H 2 (1) = | a 3−ta 22 |与t实数的约束和第二Hankel行列式H 2 (2) = | a 2 a 4−a 23 |。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信