{"title":"Random networks grown by fusing edges via urns","authors":"K. R. Bhutani, Ravi Kalpathy, H. Mahmoud","doi":"10.1017/nws.2022.30","DOIUrl":null,"url":null,"abstract":"Abstract Many classic networks grow by hooking small components via vertices. We introduce a class of networks that grows by fusing the edges of a small graph to an edge chosen uniformly at random from the network. For this random edge-hooking network, we study the local degree profile, that is, the evolution of the average degree of a vertex over time. For a special subclass, we further determine the exact distribution and an asymptotic gamma-type distribution. We also study the “core,” which consists of the well-anchored edges that experience fusing. A central limit theorem emerges for the size of the core. At the end, we look at an alternative model of randomness attained by preferential hooking, favoring edges that experience more fusing. Under preferential hooking, the core still follows a Gaussian law but with different parameters. Throughout, Pólya urns are systematically used as a method of proof.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2022.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract Many classic networks grow by hooking small components via vertices. We introduce a class of networks that grows by fusing the edges of a small graph to an edge chosen uniformly at random from the network. For this random edge-hooking network, we study the local degree profile, that is, the evolution of the average degree of a vertex over time. For a special subclass, we further determine the exact distribution and an asymptotic gamma-type distribution. We also study the “core,” which consists of the well-anchored edges that experience fusing. A central limit theorem emerges for the size of the core. At the end, we look at an alternative model of randomness attained by preferential hooking, favoring edges that experience more fusing. Under preferential hooking, the core still follows a Gaussian law but with different parameters. Throughout, Pólya urns are systematically used as a method of proof.
期刊介绍:
Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.