{"title":"Real-Time AI driven Interpretation of Ultrasonic Data from Resistance Spot Weld Process Monitoring For Adaptive Welding","authors":"R. Scott, D. Stocco, A. Chertov, Roman Gr. Maev","doi":"10.32548/2023.me-04344","DOIUrl":null,"url":null,"abstract":"Adaptive resistance spot welding systems typically rely on real-time analysis of dynamic resistance curves and other indirect measurements to estimate weld progress and guide adaptive weld control algorithms. Though efficient, these approaches are not always reliable, and consequently there is a need for improved feedback systems to drive adaptive welding algorithms. As an alternative, an advanced in-line integrated ultrasonic monitoring system is proposed, with real-time weld process characterization driven by artificial intelligence (AI) to create actionable feedback for the weld controller. Such a system would require real-time ultrasonic data interpretation, and for this a solution using deep learning was investigated. The proposed solution monitors the ultrasonic data for key process events and estimates the vertical size of the weld nugget proportional to the stack size throughout the welding process. This study shows that adaptive welding using ultrasonic process monitoring backed by AI-based data interpretation has immense potential. This research highlights the importance of nondestructive evaluation (NDE) in the zero-defect manufacturing paradigm.","PeriodicalId":49876,"journal":{"name":"Materials Evaluation","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32548/2023.me-04344","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Adaptive resistance spot welding systems typically rely on real-time analysis of dynamic resistance curves and other indirect measurements to estimate weld progress and guide adaptive weld control algorithms. Though efficient, these approaches are not always reliable, and consequently there is a need for improved feedback systems to drive adaptive welding algorithms. As an alternative, an advanced in-line integrated ultrasonic monitoring system is proposed, with real-time weld process characterization driven by artificial intelligence (AI) to create actionable feedback for the weld controller. Such a system would require real-time ultrasonic data interpretation, and for this a solution using deep learning was investigated. The proposed solution monitors the ultrasonic data for key process events and estimates the vertical size of the weld nugget proportional to the stack size throughout the welding process. This study shows that adaptive welding using ultrasonic process monitoring backed by AI-based data interpretation has immense potential. This research highlights the importance of nondestructive evaluation (NDE) in the zero-defect manufacturing paradigm.
期刊介绍:
Materials Evaluation publishes articles, news and features intended to increase the NDT practitioner’s knowledge of the science and technology involved in the field, bringing informative articles to the NDT public while highlighting the ongoing efforts of ASNT to fulfill its mission. M.E. is a peer-reviewed journal, relying on technicians and researchers to help grow and educate its members by providing relevant, cutting-edge and exclusive content containing technical details and discussions. The only periodical of its kind, M.E. is circulated to members and nonmember paid subscribers. The magazine is truly international in scope, with readers in over 90 nations. The journal’s history and archive reaches back to the earliest formative days of the Society.