Conservation Laws and Symmetry Reductions of the Hunter–Saxton Equation via the Double Reduction Method

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Molahlehi Charles Kakuli, W. Sinkala, P. Masemola
{"title":"Conservation Laws and Symmetry Reductions of the Hunter–Saxton Equation via the Double Reduction Method","authors":"Molahlehi Charles Kakuli, W. Sinkala, P. Masemola","doi":"10.3390/mca28050092","DOIUrl":null,"url":null,"abstract":"This study investigates via Lie symmetry analysis the Hunter–Saxton equation, an equation relevant to the theoretical analysis of nematic liquid crystals. We employ the multiplier method to obtain conservation laws of the equation that arise from first-order multipliers. Conservation laws of the equation, combined with the admitted Lie point symmetries, enable us to perform symmetry reductions by employing the double reduction method. The method exploits the relationship between symmetries and conservation laws to reduce both the number of variables and the order of the equation. Five nontrivial conservation laws of the Hunter–Saxton equation are derived, four of which are found to have associated Lie point symmetries. Applying the double reduction method to the equation results in a set of first-order ordinary differential equations, the solutions of which represent invariant solutions for the equation. While the double reduction method may be more complex to implement than the classical method, since it involves finding Lie point symmetries and deriving conservation laws, it has some advantages over the classical method of reducing PDEs. Firstly, it is more efficient in that it can reduce the number of variables and order of the equation in a single step. Secondly, by incorporating conservation laws, physically meaningful solutions that satisfy important physical constraints can be obtained.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28050092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates via Lie symmetry analysis the Hunter–Saxton equation, an equation relevant to the theoretical analysis of nematic liquid crystals. We employ the multiplier method to obtain conservation laws of the equation that arise from first-order multipliers. Conservation laws of the equation, combined with the admitted Lie point symmetries, enable us to perform symmetry reductions by employing the double reduction method. The method exploits the relationship between symmetries and conservation laws to reduce both the number of variables and the order of the equation. Five nontrivial conservation laws of the Hunter–Saxton equation are derived, four of which are found to have associated Lie point symmetries. Applying the double reduction method to the equation results in a set of first-order ordinary differential equations, the solutions of which represent invariant solutions for the equation. While the double reduction method may be more complex to implement than the classical method, since it involves finding Lie point symmetries and deriving conservation laws, it has some advantages over the classical method of reducing PDEs. Firstly, it is more efficient in that it can reduce the number of variables and order of the equation in a single step. Secondly, by incorporating conservation laws, physically meaningful solutions that satisfy important physical constraints can be obtained.
Hunter-Saxton方程的守恒定律和对称约简的双重约简方法
本文通过李对称分析研究了与向列型液晶理论分析相关的Hunter-Saxton方程。我们采用乘数法得到由一阶乘数引起的方程的守恒定律。方程的守恒定律,结合承认的李点对称性,使我们能够采用双重约简方法进行对称约简。该方法利用对称性和守恒律之间的关系来减少变量的数量和方程的顺序。导出了hunt - saxton方程的五个非平凡守恒定律,其中四个发现具有相关的李点对称性。将二阶约简法应用于该方程得到一阶常微分方程,其解表示该方程的不变解。虽然双重约简方法可能比经典方法更复杂,因为它涉及到寻找李点对称性和推导守恒定律,但它比经典方法具有一些优势。首先,它的效率更高,因为它可以在一个步骤中减少变量的数量和方程的顺序。其次,通过结合守恒定律,可以得到满足重要物理约束的物理上有意义的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical & Computational Applications
Mathematical & Computational Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
10.50%
发文量
86
审稿时长
12 weeks
期刊介绍: Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信