{"title":"Size-dependent growth kinetics model for potassium chloride from seeded chloride solution","authors":"Dan Zheng, Jiao Wang, Yueqiu Shen, Meihui Yang, Menglin Xu, Yulan Ma, Yongqi Tian, Xieping Wu","doi":"10.1515/ijcre-2022-0142","DOIUrl":null,"url":null,"abstract":"Abstract It was widely known that crystallization kinetics are the basis for crystallization behavior and crystallizer scale-up design. Cooling crystallization of potassium chloride was an essential unit operation in recycling industry. Some researchers have proposed the strategy of adding seed crystals for the intermittent cooling crystallization process to control the particle size and distribution of the target product. This paper studied the complex function relation between particle size and growth rate of KCI in the crystallization process in a continuous mixed-suspension mixed-product-removal (MSMPR) crystallizer at a steady state. Using the crystallization kinetics data, the mathematical models of coupling crystallization were established based on the population balance equations and mass balance equations. Since population density distributions of products behave multiform under different conditions, based on diffusion theory. The growth rate was obtained by a least square method for the multivariate linear regression, and the reliability of the kinetics model was validated experimentally. Fitting results indicated that some classical models, including several size-independent growth models and size-dependent growth models, such as Bransom, C-R, MJ2, ASL, and MJ3, could not model the size-dependent growth accurately. Based on this situation, an exponential growth model was proposed and confirmed to describe the size-dependent growth behavior. It was found that the model parameters have definite meanings and were strongly related to particle size. Compared with the classical models, this model showed good pertinency and adaptability to experimental results when used to describe the population density distribution and the size-dependent growth rate of KCI. This research could provide a theoretical guide for optimizing the crystallization process and designing industrial crystallizers.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"21 1","pages":"801 - 813"},"PeriodicalIF":1.6000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2022-0142","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract It was widely known that crystallization kinetics are the basis for crystallization behavior and crystallizer scale-up design. Cooling crystallization of potassium chloride was an essential unit operation in recycling industry. Some researchers have proposed the strategy of adding seed crystals for the intermittent cooling crystallization process to control the particle size and distribution of the target product. This paper studied the complex function relation between particle size and growth rate of KCI in the crystallization process in a continuous mixed-suspension mixed-product-removal (MSMPR) crystallizer at a steady state. Using the crystallization kinetics data, the mathematical models of coupling crystallization were established based on the population balance equations and mass balance equations. Since population density distributions of products behave multiform under different conditions, based on diffusion theory. The growth rate was obtained by a least square method for the multivariate linear regression, and the reliability of the kinetics model was validated experimentally. Fitting results indicated that some classical models, including several size-independent growth models and size-dependent growth models, such as Bransom, C-R, MJ2, ASL, and MJ3, could not model the size-dependent growth accurately. Based on this situation, an exponential growth model was proposed and confirmed to describe the size-dependent growth behavior. It was found that the model parameters have definite meanings and were strongly related to particle size. Compared with the classical models, this model showed good pertinency and adaptability to experimental results when used to describe the population density distribution and the size-dependent growth rate of KCI. This research could provide a theoretical guide for optimizing the crystallization process and designing industrial crystallizers.
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.