Kejing Chen, Wei Meng, Jinhan Wang, Kun Liu, Zhenbo Lu
{"title":"An investigation on the structural vibrations of multi-rotor passenger drones","authors":"Kejing Chen, Wei Meng, Jinhan Wang, Kun Liu, Zhenbo Lu","doi":"10.1177/17568293231199097","DOIUrl":null,"url":null,"abstract":"In order to solve the structural damage problem of the first generation of large multi-rotor manned drones, the present work has designed to study the structural vibration problems of multi-rotor drones. On a small multi-rotor drone, the laser vibration meter verified the reliability of acceleration sensor measurement of vibration and found that circular shape carbon fiber arms have strong damping abilities, with the strongest vibration in the Z-axis direction. To improve the design of the second generation of large multi-rotor manned drones, elliptical shape carbon fiber arms were employed instead of circular arms. Experiments showed that the main vibrations of the large multi-rotor manned drone’s arm are low-frequency vibrations below 200Hz, producing mainly torsional and bending modes, and the elliptical carbon fiber arms significantly reduce vibrations in the Z-axis direction. This study provides experimental data support for multi-rotor manned drones and further presents an improvement strategy for suppressing the vibrations of the multi-rotor manned drones.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293231199097","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to solve the structural damage problem of the first generation of large multi-rotor manned drones, the present work has designed to study the structural vibration problems of multi-rotor drones. On a small multi-rotor drone, the laser vibration meter verified the reliability of acceleration sensor measurement of vibration and found that circular shape carbon fiber arms have strong damping abilities, with the strongest vibration in the Z-axis direction. To improve the design of the second generation of large multi-rotor manned drones, elliptical shape carbon fiber arms were employed instead of circular arms. Experiments showed that the main vibrations of the large multi-rotor manned drone’s arm are low-frequency vibrations below 200Hz, producing mainly torsional and bending modes, and the elliptical carbon fiber arms significantly reduce vibrations in the Z-axis direction. This study provides experimental data support for multi-rotor manned drones and further presents an improvement strategy for suppressing the vibrations of the multi-rotor manned drones.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.