Kejing Chen, Wei Meng, Jinhan Wang, Kun Liu, Zhenbo Lu
{"title":"An investigation on the structural vibrations of multi-rotor passenger drones","authors":"Kejing Chen, Wei Meng, Jinhan Wang, Kun Liu, Zhenbo Lu","doi":"10.1177/17568293231199097","DOIUrl":null,"url":null,"abstract":"In order to solve the structural damage problem of the first generation of large multi-rotor manned drones, the present work has designed to study the structural vibration problems of multi-rotor drones. On a small multi-rotor drone, the laser vibration meter verified the reliability of acceleration sensor measurement of vibration and found that circular shape carbon fiber arms have strong damping abilities, with the strongest vibration in the Z-axis direction. To improve the design of the second generation of large multi-rotor manned drones, elliptical shape carbon fiber arms were employed instead of circular arms. Experiments showed that the main vibrations of the large multi-rotor manned drone’s arm are low-frequency vibrations below 200Hz, producing mainly torsional and bending modes, and the elliptical carbon fiber arms significantly reduce vibrations in the Z-axis direction. This study provides experimental data support for multi-rotor manned drones and further presents an improvement strategy for suppressing the vibrations of the multi-rotor manned drones.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Micro Air Vehicles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293231199097","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
In order to solve the structural damage problem of the first generation of large multi-rotor manned drones, the present work has designed to study the structural vibration problems of multi-rotor drones. On a small multi-rotor drone, the laser vibration meter verified the reliability of acceleration sensor measurement of vibration and found that circular shape carbon fiber arms have strong damping abilities, with the strongest vibration in the Z-axis direction. To improve the design of the second generation of large multi-rotor manned drones, elliptical shape carbon fiber arms were employed instead of circular arms. Experiments showed that the main vibrations of the large multi-rotor manned drone’s arm are low-frequency vibrations below 200Hz, producing mainly torsional and bending modes, and the elliptical carbon fiber arms significantly reduce vibrations in the Z-axis direction. This study provides experimental data support for multi-rotor manned drones and further presents an improvement strategy for suppressing the vibrations of the multi-rotor manned drones.
期刊介绍:
The role of the International Journal of Micro Air Vehicles is to provide the scientific and engineering community with a peer-reviewed open access journal dedicated to publishing high-quality technical articles summarizing both fundamental and applied research in the area of micro air vehicles.