Norms in motivic homotopy theory

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tom Bachmann, Marc Hoyois
{"title":"Norms in motivic homotopy theory","authors":"Tom Bachmann, Marc Hoyois","doi":"10.24033/ast.1147","DOIUrl":null,"url":null,"abstract":"If $f : S' \\to S$ is a finite locally free morphism of schemes, we construct a symmetric monoidal \"norm\" functor $f_\\otimes : \\mathcal{H}_{\\bullet}(S')\\to \\mathcal{H}_{\\bullet}(S)$, where $\\mathcal{H}_\\bullet(S)$ is the pointed unstable motivic homotopy category over $S$. If $f$ is finite étale, we show that it stabilizes to a functor $f_\\otimes : \\mathcal{S}\\mathcal{H}(S') \\to \\mathcal{S}\\mathcal{H}(S)$, where $\\mathcal{S}\\mathcal{H}(S)$ is the $\\mathbb{P}^1$-stable motivic homotopy category over $S$. Using these norm functors, we define the notion of a  normed motivic spectrum, which is an enhancement of a motivic $E_\\infty$-ring spectrum. The main content of this text is a detailed study of the norm functors and of normed motivic spectra, and the construction of examples. In particular: we investigate the interaction of norms with Grothendieck's Galois theory, with Betti realization, and with Voevodsky's slice filtration; we prove that the norm functors categorify Rost's multiplicative transfers on Grothendieck-Witt rings; and we construct normed spectrum structures on the motivic cohomology spectrum $H\\mathbb{Z}$, the homotopy $K$-theory spectrum $KGL$, and the algebraic cobordism spectrum $MGL$. The normed spectrum structure on $H\\mathbb{Z}$ is a common refinement of Fulton and MacPherson's mutliplicative transfers on Chow groups and of Voevodsky's power operations in motivic cohomology.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ast.1147","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 95

Abstract

If $f : S' \to S$ is a finite locally free morphism of schemes, we construct a symmetric monoidal "norm" functor $f_\otimes : \mathcal{H}_{\bullet}(S')\to \mathcal{H}_{\bullet}(S)$, where $\mathcal{H}_\bullet(S)$ is the pointed unstable motivic homotopy category over $S$. If $f$ is finite étale, we show that it stabilizes to a functor $f_\otimes : \mathcal{S}\mathcal{H}(S') \to \mathcal{S}\mathcal{H}(S)$, where $\mathcal{S}\mathcal{H}(S)$ is the $\mathbb{P}^1$-stable motivic homotopy category over $S$. Using these norm functors, we define the notion of a  normed motivic spectrum, which is an enhancement of a motivic $E_\infty$-ring spectrum. The main content of this text is a detailed study of the norm functors and of normed motivic spectra, and the construction of examples. In particular: we investigate the interaction of norms with Grothendieck's Galois theory, with Betti realization, and with Voevodsky's slice filtration; we prove that the norm functors categorify Rost's multiplicative transfers on Grothendieck-Witt rings; and we construct normed spectrum structures on the motivic cohomology spectrum $H\mathbb{Z}$, the homotopy $K$-theory spectrum $KGL$, and the algebraic cobordism spectrum $MGL$. The normed spectrum structure on $H\mathbb{Z}$ is a common refinement of Fulton and MacPherson's mutliplicative transfers on Chow groups and of Voevodsky's power operations in motivic cohomology.
动机同伦理论中的范数
如果$f:S'\toS$是方案的有限局部自由态射,我们构造了一个对称的单调“范数”函子$f_otimes:\mathcal{H}_{\bullet}(S')\到\mathcal{H}_{\bullet}(S)$,其中$\mathcal{H}_\bullet(S)$是$S$上的有点不稳定动力同伦论范畴。如果$f$是有限的,我们证明它稳定于函子$f_otimes:\mathcal{S}\mathcal{H}(S')\to\mathcal(S)$,其中$\mathcal〔S}\math cal{H}〔S)$是$S$上的$\mathbb{P}^1$稳定的动同胚范畴。利用这些范数函子,我们定义了赋范动力谱的概念,它是动力$E_\infty$-环谱的增强。本文的主要内容是对范数函子和赋范动力谱的详细研究,以及实例的构造。特别是:我们研究了规范与Grothendieck的Galois理论、Betti实现和Voevodsky的切片过滤的相互作用;我们证明了模函子对Grothendieck-Witt环上的Rost乘性转移进行了分类;在原上同调谱$H\mathbb{Z}$、同伦论谱$K$和代数同基谱$MGL$上构造了赋范谱结构。$H\mathbb{Z}$上的赋范谱结构是Fulton和MacPherson在Chow群上的多重应用转移以及Voevodsky在动力上同调中的幂运算的共同精化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信