Joint service placement and user assignment model in multi-access edge computing networks against base-station failure

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Haruto Taka, Fujun He, Eiji Oki
{"title":"Joint service placement and user assignment model in multi-access edge computing networks against base-station failure","authors":"Haruto Taka,&nbsp;Fujun He,&nbsp;Eiji Oki","doi":"10.1002/nem.2233","DOIUrl":null,"url":null,"abstract":"<p>Multi-access edge computing (MEC) enables users to exploit the resources of cloud computing at a base station (BS) in proximity to the users where an MEC server is hosted. While we have advantage of being able to communicate with low latency and small network load in MEC networks, the resources in BSs are limited. One challenge is where to provide users with services from to make efficient use of resources. Furthermore, to enhance the reliability of MEC system, the case that a BS fails needs to be considered. This paper proposes a service placement and user assignment model with preventive start-time optimization against a single BS failure in MEC networks. The proposed model preventively determines the service placement and user assignment in each BS failure pattern to minimize the worst-case penalty which is the largest penalty among all failure patterns. We formulate the proposed model as an integer linear programming problem. We prove that the considered problem is NP-hard. When the problem size becomes large, it may not be solved in a practical computation time. To solve larger size problems, we introduce two algorithms: one is the greedy algorithm with allocation upgrade and the other is with allocation upgrade and preemption. The results show that the introduced algorithms obtain solutions with smaller worst-case penalty than the benchmark in a practical time.</p>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"33 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.2233","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-access edge computing (MEC) enables users to exploit the resources of cloud computing at a base station (BS) in proximity to the users where an MEC server is hosted. While we have advantage of being able to communicate with low latency and small network load in MEC networks, the resources in BSs are limited. One challenge is where to provide users with services from to make efficient use of resources. Furthermore, to enhance the reliability of MEC system, the case that a BS fails needs to be considered. This paper proposes a service placement and user assignment model with preventive start-time optimization against a single BS failure in MEC networks. The proposed model preventively determines the service placement and user assignment in each BS failure pattern to minimize the worst-case penalty which is the largest penalty among all failure patterns. We formulate the proposed model as an integer linear programming problem. We prove that the considered problem is NP-hard. When the problem size becomes large, it may not be solved in a practical computation time. To solve larger size problems, we introduce two algorithms: one is the greedy algorithm with allocation upgrade and the other is with allocation upgrade and preemption. The results show that the introduced algorithms obtain solutions with smaller worst-case penalty than the benchmark in a practical time.

Abstract Image

多接入边缘计算网络中针对基站故障的联合服务布局和用户分配模型
多接入边缘计算(MEC)使用户能够在靠近MEC服务器所在用户的基站(BS)上利用云计算资源。虽然我们在MEC网络中具有低延迟和小网络负载的优势,但BSs中的资源是有限的。其中一个挑战是如何为用户提供服务,从而有效地利用资源。此外,为了提高MEC系统的可靠性,需要考虑BS失效的情况。本文提出了一种针对MEC网络中单个BS故障进行预防性启动时间优化的服务布局和用户分配模型。该模型预防性地确定了每种BS故障模式下的服务布局和用户分配,以最小化所有故障模式中最大的最坏情况惩罚。我们将所提出的模型表述为一个整数线性规划问题。我们证明了所考虑的问题是np困难的。当问题规模变大时,在实际的计算时间内可能无法解决。为了解决更大规模的问题,我们引入了两种算法:一种是带分配升级的贪心算法,另一种是带分配升级和抢占的算法。结果表明,所引入的算法在实际时间内得到的最坏情况惩罚比基准算法小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Network Management
International Journal of Network Management COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
5.10
自引率
6.70%
发文量
25
审稿时长
>12 weeks
期刊介绍: Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信