Convexity estimates for hypersurfaces moving by concave curvature functions

IF 2.3 1区 数学 Q1 MATHEMATICS
S. Lynch
{"title":"Convexity estimates for hypersurfaces moving by concave curvature functions","authors":"S. Lynch","doi":"10.1215/00127094-2022-0011","DOIUrl":null,"url":null,"abstract":"We study fully nonlinear geometric flows that deform strictly $k$-convex hypersurfaces in Euclidean space with pointwise normal speed given by a concave function of the principal curvatures. Specifically, the speeds we consider are obtained by performing a nonlinear interpolation between the mean and the $k$-harmonic mean of the principal curvatures. Our main result is a convexity estimate showing that, on compact solutions, regions of high curvature are approximately convex. In contrast to the mean curvature flow, the fully nonlinear flows considered here preserve $k$-convexity in a Riemannian background, and we show that the convexity estimate carries over to this setting as long as the ambient curvature satisfies a natural pinching condition.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0011","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We study fully nonlinear geometric flows that deform strictly $k$-convex hypersurfaces in Euclidean space with pointwise normal speed given by a concave function of the principal curvatures. Specifically, the speeds we consider are obtained by performing a nonlinear interpolation between the mean and the $k$-harmonic mean of the principal curvatures. Our main result is a convexity estimate showing that, on compact solutions, regions of high curvature are approximately convex. In contrast to the mean curvature flow, the fully nonlinear flows considered here preserve $k$-convexity in a Riemannian background, and we show that the convexity estimate carries over to this setting as long as the ambient curvature satisfies a natural pinching condition.
由凹曲率函数移动的超曲面的凸性估计
研究了在欧几里德空间中具有由主曲率的凹函数给出的点向法向速度的严格$k$凸超曲面变形的完全非线性几何流。具体来说,我们考虑的速度是通过在主曲率的平均值和k调和平均值之间进行非线性插值得到的。我们的主要结果是一个凸性估计,表明在紧解上,高曲率区域近似凸。与平均曲率流相反,这里考虑的完全非线性流在黎曼背景下保持k -凸性,并且我们表明,只要环境曲率满足自然挤压条件,凸性估计就会延续到这种设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信