Common extremal graphs for three inequalities involving domination parameters

IF 0.6 Q3 MATHEMATICS
V. Samodivkin
{"title":"Common extremal graphs for three inequalities involving domination parameters","authors":"V. Samodivkin","doi":"10.22108/TOC.2017.21464","DOIUrl":null,"url":null,"abstract":"‎Let $delta (G)$‎, ‎$Delta (G)$ and $gamma(G)$‎ ‎be the minimum degree‎, ‎maximum degree and‎ ‎domination number of a graph $G=(V(G)‎, ‎E(G))$‎, ‎respectively‎. ‎A partition of $V(G)$‎, ‎all of whose classes are dominating sets in $G$‎, ‎is called a domatic partition of $G$‎. ‎The maximum number of classes of‎ ‎a domatic partition of $G$ is called the domatic number of $G$‎, ‎denoted $d(G)$‎. ‎It is well known that‎ ‎$d(G) leq delta(G)‎ + ‎1$‎, ‎$d(G)gamma(G) leq |V(G)|$ cite{ch}‎, ‎and $|V(G)| leq (Delta(G)‎+‎1)gamma(G)$ cite{berge}‎. ‎In this paper‎, ‎we investigate the graphs $G$ for which‎ ‎all the above inequalities become simultaneously equalities‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"6 1","pages":"1-9"},"PeriodicalIF":0.6000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.21464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

‎Let $delta (G)$‎, ‎$Delta (G)$ and $gamma(G)$‎ ‎be the minimum degree‎, ‎maximum degree and‎ ‎domination number of a graph $G=(V(G)‎, ‎E(G))$‎, ‎respectively‎. ‎A partition of $V(G)$‎, ‎all of whose classes are dominating sets in $G$‎, ‎is called a domatic partition of $G$‎. ‎The maximum number of classes of‎ ‎a domatic partition of $G$ is called the domatic number of $G$‎, ‎denoted $d(G)$‎. ‎It is well known that‎ ‎$d(G) leq delta(G)‎ + ‎1$‎, ‎$d(G)gamma(G) leq |V(G)|$ cite{ch}‎, ‎and $|V(G)| leq (Delta(G)‎+‎1)gamma(G)$ cite{berge}‎. ‎In this paper‎, ‎we investigate the graphs $G$ for which‎ ‎all the above inequalities become simultaneously equalities‎.
涉及控制参数的三个不等式的公共极值图
‎设$delta(G)$‎, ‎$Delta(G)$和$gamma(G)$‎ ‎是最低学历‎, ‎最大程度和‎ ‎图$G=(V(G)‎, ‎E(G))$‎, ‎分别地‎. ‎$V(G)的分区$‎, ‎其所有类都是$G中的支配集$‎, ‎称为$G的domatic分区$‎. ‎的最大类数‎ ‎$G$的域分区称为$G的域数$‎, ‎表示为$d(G)$‎. ‎众所周知‎ ‎$d(G)leq delta(G)‎ + ‎1$‎, ‎$d(G)gamma(G)leq|V(G)|$cite{ch}‎, ‎和$|V(G)|leq(Δ(G)‎+‎1) gamma(G)$cite{berge}‎. ‎在本文中‎, ‎我们研究了图$G$‎ ‎所有上述不等式同时变为等式‎.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信