The impact of SnO2 photoelectrode’s thickness on photovoltaic properties of the solar cell FTO:SnO2:PTB7-TH:ITIC/Mo/Ag

IF 0.4 Q4 PHYSICS, MULTIDISCIPLINARY
A. Aimukhanov, T. Seisembekova, A. Zeinidenov, D. S. Kambar
{"title":"The impact of SnO2 photoelectrode’s thickness on photovoltaic properties of the solar cell FTO:SnO2:PTB7-TH:ITIC/Mo/Ag","authors":"A. Aimukhanov, T. Seisembekova, A. Zeinidenov, D. S. Kambar","doi":"10.31489/2022ph2/86-91","DOIUrl":null,"url":null,"abstract":"The paper reports the results of a study of the morphological, optical and electrophysical parameters of SnO2 films. SnO2 films are applied by spin-coating at different revolutions of the centrifuge. The topography of the surface and the thickness of the SnO2 films are studied using an atomic force microscope. The current-voltage characteristics of solar cells are measured. The optical properties with different thicknesses of SnO2 films are also investigated. It is shown that an increase in the rotation speed of the substrate leads to a decrease in the surface roughness of the SnO2 films. It is found that changes in the morphology of SnO2 films contribute to the rapid transport of injected holes to the external electrode and reduce the probability of reverse recombination. Cells with an electron transport layer of SnO2 at 2000 revolutions showed a low efficiency of 0.17%. With a decrease in the thickness of the SnO2 films to a value of 62 nm, there is an increase in the value of the short-circuit current by 2.3 times and a change in the no-load voltage by 1.12 times.","PeriodicalId":29904,"journal":{"name":"Bulletin of the University of Karaganda-Physics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the University of Karaganda-Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022ph2/86-91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The paper reports the results of a study of the morphological, optical and electrophysical parameters of SnO2 films. SnO2 films are applied by spin-coating at different revolutions of the centrifuge. The topography of the surface and the thickness of the SnO2 films are studied using an atomic force microscope. The current-voltage characteristics of solar cells are measured. The optical properties with different thicknesses of SnO2 films are also investigated. It is shown that an increase in the rotation speed of the substrate leads to a decrease in the surface roughness of the SnO2 films. It is found that changes in the morphology of SnO2 films contribute to the rapid transport of injected holes to the external electrode and reduce the probability of reverse recombination. Cells with an electron transport layer of SnO2 at 2000 revolutions showed a low efficiency of 0.17%. With a decrease in the thickness of the SnO2 films to a value of 62 nm, there is an increase in the value of the short-circuit current by 2.3 times and a change in the no-load voltage by 1.12 times.
SnO2光电极厚度对FTO:SnO2:PTB7-TH:ITIC/Mo/Ag太阳能电池光电性能的影响
本文报道了SnO2薄膜的形貌、光学和电物理参数的研究结果。在不同的离心机转速下,采用自旋涂覆的方法涂覆SnO2薄膜。利用原子力显微镜对SnO2薄膜的表面形貌和厚度进行了研究。测量了太阳能电池的电流-电压特性。研究了不同厚度SnO2薄膜的光学性能。结果表明,随着基片转速的增加,SnO2薄膜的表面粗糙度降低。研究发现,SnO2薄膜形貌的改变有助于注入的空穴向外电极的快速传递,降低了反向复合的概率。具有SnO2电子传递层的电池在2000转时的效率为0.17%。当SnO2薄膜厚度减小到62 nm时,短路电流增加了2.3倍,空载电压变化了1.12倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
50.00%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信