Northern-high-latitude permafrost and terrestrial carbon response to two solar geoengineering scenarios

Yan-Gui Chen, D. Ji, Qian Zhang, J. Moore, O. Boucher, A. Jones, T. Lurton, M. Mills, U. Niemeier, R. Séférian, S. Tilmes
{"title":"Northern-high-latitude permafrost and terrestrial carbon response to two solar geoengineering scenarios","authors":"Yan-Gui Chen, D. Ji, Qian Zhang, J. Moore, O. Boucher, A. Jones, T. Lurton, M. Mills, U. Niemeier, R. Séférian, S. Tilmes","doi":"10.5194/esd-14-55-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The northern-high-latitude permafrost contains almost twice the carbon\ncontent of the atmosphere, and it is widely considered to be a non-linear and\ntipping element in the earth's climate system under global warming. Solar\ngeoengineering is a means of mitigating temperature rise and reduces some of\nthe associated climate impacts by increasing the planetary albedo; the\npermafrost thaw is expected to be moderated under slower temperature rise.\nWe analyze the permafrost response as simulated by five fully coupled earth\nsystem models (ESMs) and one offline land surface model under four future\nscenarios; two solar geoengineering scenarios (G6solar and G6sulfur) based\non the high-emission scenario (ssp585) restore the global temperature from\nthe ssp585 levels to the moderate-mitigation scenario (ssp245) levels via\nsolar dimming and stratospheric aerosol injection. G6solar and G6sulfur can\nslow the northern-high-latitude permafrost degradation but cannot restore\nthe permafrost states from ssp585 to those under ssp245. G6solar and\nG6sulfur tend to produce a deeper active layer than ssp245 and expose more\nthawed soil organic carbon (SOC) due to robust residual high-latitude\nwarming, especially over northern Eurasia. G6solar and G6sulfur preserve\nmore SOC of 4.6 ± 4.6 and 3.4 ± 4.8 Pg C (coupled ESM simulations) or\n16.4 ± 4.7 and 12.3 ± 7.9 Pg C (offline land surface model\nsimulations), respectively, than ssp585 in the northern near-surface\npermafrost region. The turnover times of SOC decline slower under G6solar\nand G6sulfur than ssp585 but faster than ssp245. The permafrost\ncarbon–climate feedback is expected to be weaker under solar geoengineering.\n","PeriodicalId":92775,"journal":{"name":"Earth system dynamics : ESD","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth system dynamics : ESD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/esd-14-55-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. The northern-high-latitude permafrost contains almost twice the carbon content of the atmosphere, and it is widely considered to be a non-linear and tipping element in the earth's climate system under global warming. Solar geoengineering is a means of mitigating temperature rise and reduces some of the associated climate impacts by increasing the planetary albedo; the permafrost thaw is expected to be moderated under slower temperature rise. We analyze the permafrost response as simulated by five fully coupled earth system models (ESMs) and one offline land surface model under four future scenarios; two solar geoengineering scenarios (G6solar and G6sulfur) based on the high-emission scenario (ssp585) restore the global temperature from the ssp585 levels to the moderate-mitigation scenario (ssp245) levels via solar dimming and stratospheric aerosol injection. G6solar and G6sulfur can slow the northern-high-latitude permafrost degradation but cannot restore the permafrost states from ssp585 to those under ssp245. G6solar and G6sulfur tend to produce a deeper active layer than ssp245 and expose more thawed soil organic carbon (SOC) due to robust residual high-latitude warming, especially over northern Eurasia. G6solar and G6sulfur preserve more SOC of 4.6 ± 4.6 and 3.4 ± 4.8 Pg C (coupled ESM simulations) or 16.4 ± 4.7 and 12.3 ± 7.9 Pg C (offline land surface model simulations), respectively, than ssp585 in the northern near-surface permafrost region. The turnover times of SOC decline slower under G6solar and G6sulfur than ssp585 but faster than ssp245. The permafrost carbon–climate feedback is expected to be weaker under solar geoengineering.
北高纬度永久冻土和陆地碳对两种太阳能地球工程情景的响应
摘要北方高纬度永久冻土的碳含量几乎是大气的两倍,在全球变暖的情况下,它被广泛认为是地球气候系统中的一个非线性和跳跃元素。太阳地球工程是一种减缓温度上升的手段,并通过增加行星反照率来减少一些相关的气候影响;在气温上升缓慢的情况下,预计永久冻土融化将有所减缓。我们分析了五个全耦合地球系统模型(ESM)和一个离线地表模型在四个未来条件下模拟的多年冻土响应;基于高排放情景(ssp585)的两种太阳能地球工程情景(G6solar和G6sulfur)通过太阳调光和平流层气溶胶注入将全球温度从ssp5850水平恢复到中等缓解情景(ssp245)水平。G6solar和G6sulfur可以减缓北高纬度多年冻土的退化,但不能恢复ssp585至ssp245以下的多年冻土状态。G6solar和G6sulfur倾向于产生比ssp245更深的活性层,并暴露出更多解冻的土壤有机碳(SOC),这是由于残余的高纬度形成,尤其是在欧亚大陆北部。G6solar和G6sulfur的SOC保持在4.6以上 ± 4.6和3.4 ± 4.8 Pg C(耦合ESM模拟)或16.4 ± 4.7和12.3 ± 7.9 Pg C(离线陆地表面模型模拟),分别高于北部近地表霜冻地区的ssp585。在G6sol和G6sulfur条件下,SOC的周转时间比ssp585下降得慢,但比ssp245下降得快。在太阳能地球工程下,长期碳-气候反馈预计会减弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信