Annabella Astorino , Matteo Avolio , Antonio Fuduli
{"title":"Maximum-margin polyhedral separation for binary Multiple Instance Learning","authors":"Annabella Astorino , Matteo Avolio , Antonio Fuduli","doi":"10.1016/j.ejco.2023.100070","DOIUrl":null,"url":null,"abstract":"<div><p>Multiple Instance Learning (MIL) is a kind of weak supervised learning, where each sample is represented by a bag of instances. The main characteristic of such problems resides in the training phase, since the class labels are provided only for each bag, whereas the instance labels are unknown.</p><p>We focus on binary MIL problems characterized by two types of instances (positive and negative): based on the standard MIL assumption, a bag is considered positive if at least one of its instances is positive and it is considered negative otherwise. Then our idea is to generate a maximum-margin polyhedral separation surface such that, for each positive bag, at least one of its instances is inside the polyhedron and all the instances of the negative bags are outside. The resulting optimization problem is a nonlinear, nonconvex and nonsmooth mixed integer program, that we heuristically solve by a Block Coordinate Descent type method, based on repeatedly applying the DC (Difference of Convex) Algorithm.</p><p>Numerical results are presented on a set of benchmark datasets.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"11 ","pages":"Article 100070"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S219244062300014X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple Instance Learning (MIL) is a kind of weak supervised learning, where each sample is represented by a bag of instances. The main characteristic of such problems resides in the training phase, since the class labels are provided only for each bag, whereas the instance labels are unknown.
We focus on binary MIL problems characterized by two types of instances (positive and negative): based on the standard MIL assumption, a bag is considered positive if at least one of its instances is positive and it is considered negative otherwise. Then our idea is to generate a maximum-margin polyhedral separation surface such that, for each positive bag, at least one of its instances is inside the polyhedron and all the instances of the negative bags are outside. The resulting optimization problem is a nonlinear, nonconvex and nonsmooth mixed integer program, that we heuristically solve by a Block Coordinate Descent type method, based on repeatedly applying the DC (Difference of Convex) Algorithm.
Numerical results are presented on a set of benchmark datasets.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.