Geometric stabilisation via $p$-adic integration

IF 3.5 1区 数学 Q1 MATHEMATICS
M. Groechenig, Dimitri Wyss, Paul Ziegler
{"title":"Geometric stabilisation via $p$-adic integration","authors":"M. Groechenig, Dimitri Wyss, Paul Ziegler","doi":"10.1090/jams/948","DOIUrl":null,"url":null,"abstract":"In this article we give a new proof of Ng\\^o's Geometric Stabilisation Theorem, which implies the Fundamental Lemma. This is a statement which relates the cohomology of Hitchin fibres for a quasi-split reductive group scheme $G$ to the cohomology of Hitchin fibres for the endoscopy groups $H_{\\kappa}$. Our proof avoids the Decomposition and Support Theorem, instead the argument is based on results for $p$-adic integration on coarse moduli spaces of Deligne-Mumford stacks. Along the way we establish a description of the inertia stack of the (anisotropic) moduli stack of $G$-Higgs bundles in terms of endoscopic data, and extend duality for generic Hitchin fibres of Langlands dual group schemes to the quasi-split case.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/948","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/948","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

Abstract

In this article we give a new proof of Ng\^o's Geometric Stabilisation Theorem, which implies the Fundamental Lemma. This is a statement which relates the cohomology of Hitchin fibres for a quasi-split reductive group scheme $G$ to the cohomology of Hitchin fibres for the endoscopy groups $H_{\kappa}$. Our proof avoids the Decomposition and Support Theorem, instead the argument is based on results for $p$-adic integration on coarse moduli spaces of Deligne-Mumford stacks. Along the way we establish a description of the inertia stack of the (anisotropic) moduli stack of $G$-Higgs bundles in terms of endoscopic data, and extend duality for generic Hitchin fibres of Langlands dual group schemes to the quasi-split case.
通过$p$adic积分实现几何稳定
本文给出了Ng\^o几何稳定定理的一个新的证明,它蕴涵了基本引理。本文将拟分裂约群方案$G$的Hitchin纤维的上同调性与内窥镜群$H_{\kappa}$的Hitchin纤维的上同调性联系起来。我们的证明避免了分解和支持定理,而是基于delignee - mumford堆的粗模空间上的$p$进积分的结果。在此过程中,我们根据内窥镜数据建立了$G$-Higgs束(各向异性)模堆栈的惯性堆栈的描述,并将Langlands对偶群格式的一般Hitchin光纤的对偶性推广到准分裂情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信