On the First Order Optimization Methods in Deep Image Prior

IF 0.5 Q4 ENGINEERING, MECHANICAL
Pasquale Cascarano, Andrea Sebastiani, Giorgia Franchini, F. Porta
{"title":"On the First Order Optimization Methods in Deep Image Prior","authors":"Pasquale Cascarano, Andrea Sebastiani, Giorgia Franchini, F. Porta","doi":"10.1115/1.4056470","DOIUrl":null,"url":null,"abstract":"\n Deep learning methods have state-of-the-art performances in many image restoration tasks. Their effectiveness is mostly related to the size of the dataset used for the training. Deep Image Prior (DIP) is an energy function framework which eliminates the dependency on the training set, by considering the structure of a neural network as an handcrafted prior offering high impedance to noise and low impedance to signal. In this paper, we analyze and compare the use of different optimization schemes inside the DIP framework for the denoising task.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4056470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Deep learning methods have state-of-the-art performances in many image restoration tasks. Their effectiveness is mostly related to the size of the dataset used for the training. Deep Image Prior (DIP) is an energy function framework which eliminates the dependency on the training set, by considering the structure of a neural network as an handcrafted prior offering high impedance to noise and low impedance to signal. In this paper, we analyze and compare the use of different optimization schemes inside the DIP framework for the denoising task.
深度图像先验中的一阶优化方法
深度学习方法在许多图像恢复任务中具有最先进的性能。它们的有效性主要与用于训练的数据集的大小有关。深度图像先验(DIP)是一种能量函数框架,通过将神经网络的结构视为手工制作的先验,消除了对训练集的依赖性,提供了对噪声的高阻抗和对信号的低阻抗。在本文中,我们分析并比较了DIP框架内不同优化方案在去噪任务中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信