Toward improving thermal behavior of passive solar structures by natural ventilation and extraction – case study –

IF 1.1 Q3 Engineering
H. Lakrafli, P. André, M. Sennoune, K. Lekouch, Yassin Sadiki
{"title":"Toward improving thermal behavior of passive solar structures by natural ventilation and extraction – case study –","authors":"H. Lakrafli, P. André, M. Sennoune, K. Lekouch, Yassin Sadiki","doi":"10.18186/thermal.1300432","DOIUrl":null,"url":null,"abstract":"Improving the energy performance of passive energy buildings is based on reducing their consumption. These reach very high levels in overheating periods because of the mechanical ventilation systems. This work proposes to implement ventilation strategies to reduce the in-door temperature of an academic building considered a passive solar structure and designed to benefit as much as possible from solar radiation. Using TRNSYS software, with its two components, TRNBUILD and TRNFLOW, different likely scenarios were tested and allowed to identify significant results. The mechanical extraction system is a solution if the extraction threshold temperature is 21-19°C to keep the Hall_1 temperature lower. While, to make the temperature of all areas of the building more comfortable, three natural ventilation scenarios were evaluated. Obtained results highlight that natural ventilation scenario (circuit 2) is the optimal scenario which makes the different zones very comfortable and lowers the tempera-ture by an average of 4°C compared to mechanical ventilation. Thanks to the proposed venti-lation scenarios, we have shown that we can, thanks to natural ventilation, renew the air inside the different areas of the building and maintain the comfort temperature. Natural ventilation can be an alternative to mechanical ventilation if we consider appropriate scenarios. This will strongly reduce energy consumption.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1300432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the energy performance of passive energy buildings is based on reducing their consumption. These reach very high levels in overheating periods because of the mechanical ventilation systems. This work proposes to implement ventilation strategies to reduce the in-door temperature of an academic building considered a passive solar structure and designed to benefit as much as possible from solar radiation. Using TRNSYS software, with its two components, TRNBUILD and TRNFLOW, different likely scenarios were tested and allowed to identify significant results. The mechanical extraction system is a solution if the extraction threshold temperature is 21-19°C to keep the Hall_1 temperature lower. While, to make the temperature of all areas of the building more comfortable, three natural ventilation scenarios were evaluated. Obtained results highlight that natural ventilation scenario (circuit 2) is the optimal scenario which makes the different zones very comfortable and lowers the tempera-ture by an average of 4°C compared to mechanical ventilation. Thanks to the proposed venti-lation scenarios, we have shown that we can, thanks to natural ventilation, renew the air inside the different areas of the building and maintain the comfort temperature. Natural ventilation can be an alternative to mechanical ventilation if we consider appropriate scenarios. This will strongly reduce energy consumption.
通过自然通风和抽气改善被动式太阳能结构的热性能-案例研究
提高被动式能源建筑的能源性能是基于降低其能耗。由于采用了机械通风系统,在过热期间,温度会达到很高的水平。这项工作建议实施通风策略,以降低学术建筑的室内温度,该建筑被视为被动式太阳能结构,旨在尽可能多地受益于太阳辐射。使用TRNSYS软件及其两个组件TRNBUILD和TRNFLOW,测试了不同的可能场景,并允许其确定重要结果。如果提取阈值温度为21-19°C以保持Hall_1温度较低,则机械提取系统是一种解决方案。同时,为了使建筑所有区域的温度更舒适,对三种自然通风方案进行了评估。获得的结果强调,自然通风方案(回路2)是最佳方案,与机械通风相比,它使不同区域非常舒适,并将温度平均降低4°C。由于提出了通风方案,我们已经证明,由于自然通风,我们可以更新建筑不同区域的空气,并保持舒适的温度。如果我们考虑适当的情况,自然通风可以替代机械通风。这将大大降低能源消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
61
审稿时长
4 weeks
期刊介绍: Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信