Viscosity solutions to the infinity Laplacian equation with lower terms

IF 0.8 4区 数学 Q2 MATHEMATICS
Cuicui Li, Fang Liu
{"title":"Viscosity solutions to the infinity Laplacian equation with lower terms","authors":"Cuicui Li, Fang Liu","doi":"10.58997/ejde.2023.42","DOIUrl":null,"url":null,"abstract":"We establish the existence and uniqueness of viscosity solutions tothe Dirichlet problem $$\\displaylines{ \\Delta_\\infty^h u=f(x,u), \\quad \\hbox{in } \\Omega,\\cr u=q, \\quad\\hbox{on }\\partial\\Omega,}$$ where \\(q\\in C(\\partial\\Omega)\\), \\(h>1\\), \\(\\Delta_\\infty^h u=|Du|^{h-3}\\Delta_\\infty u\\). The operator \\(\\Delta_\\infty u=\\langle D^2uDu,Du \\rangle\\) is the infinity Laplacian which is strongly degenerate, quasilinear and it is associated with the absolutely minimizing Lipschitz extension. When the nonhomogeneous term \\(f(x,t)\\) is non-decreasing in \\(t\\), we prove the existence of the viscosity solution via Perron's method. We also establish a uniqueness result based on the perturbation analysis of the viscosity solutions. If the function \\(f(x,t)\\) is nonpositive (nonnegative) and non-increasing in \\(t\\), we also give the existence of viscosity solutions by an iteration technique under the condition that the domain has small diameter. Furthermore, we investigate the existence and uniqueness of viscosity solutions to the boundary-value problem with singularity $$\\displaylines{ \\Delta_\\infty^h u=-b(x)g(u), \\quad \\hbox{in } \\Omega, \\cr u>0, \\quad \\hbox{in } \\Omega, \\cr u=0, \\quad \\hbox{on }\\partial\\Omega, }$$ when the domain satisfies some regular condition. We analyze asymptotic estimates for the viscosity solution near the boundary.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.42","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We establish the existence and uniqueness of viscosity solutions tothe Dirichlet problem $$\displaylines{ \Delta_\infty^h u=f(x,u), \quad \hbox{in } \Omega,\cr u=q, \quad\hbox{on }\partial\Omega,}$$ where \(q\in C(\partial\Omega)\), \(h>1\), \(\Delta_\infty^h u=|Du|^{h-3}\Delta_\infty u\). The operator \(\Delta_\infty u=\langle D^2uDu,Du \rangle\) is the infinity Laplacian which is strongly degenerate, quasilinear and it is associated with the absolutely minimizing Lipschitz extension. When the nonhomogeneous term \(f(x,t)\) is non-decreasing in \(t\), we prove the existence of the viscosity solution via Perron's method. We also establish a uniqueness result based on the perturbation analysis of the viscosity solutions. If the function \(f(x,t)\) is nonpositive (nonnegative) and non-increasing in \(t\), we also give the existence of viscosity solutions by an iteration technique under the condition that the domain has small diameter. Furthermore, we investigate the existence and uniqueness of viscosity solutions to the boundary-value problem with singularity $$\displaylines{ \Delta_\infty^h u=-b(x)g(u), \quad \hbox{in } \Omega, \cr u>0, \quad \hbox{in } \Omega, \cr u=0, \quad \hbox{on }\partial\Omega, }$$ when the domain satisfies some regular condition. We analyze asymptotic estimates for the viscosity solution near the boundary.
无穷低项拉普拉斯方程的粘度解
我们建立了Dirichlet问题$$\displaylines{\Delta_\infty^h u=f(x,u),\quad\hbox{in}\Omega,\cr u=q,\quad \hbox{on}\partial \Omega}$$的粘性解的存在性和唯一性,其中\。算子\(\Delta_\infty u=\langle D^2uDu,Du\rangle\)是强退化、拟线性的无穷远拉普拉斯算子,它与绝对最小化Lipschitz扩张有关。当非齐次项\(f(x,t)\)在\(t)中不递减时,我们用Perron方法证明了粘性解的存在性。基于粘性解的摄动分析,我们还建立了一个唯一性结果。如果函数\(f(x,t)\)在\(t)中是非正(非负)且不递增的,则在域具有小直径的条件下,我们还通过迭代技术给出了粘性解的存在性。此外,我们还研究了当域满足某些正则条件时,具有奇异性$$\displaylines{\Delta_\infty^hu=-b(x)g(u),\quad\hbox{in}\Omega,\cr u>0,\quad \hbox{in}\Omega、\cr u=0,\quad \hbox{on}\ partial \ Omega,}$$边值问题粘性解的存在性和唯一性。我们分析了边界附近粘性解的渐近估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信