Thermodynamic formalism for dispersing billiards

IF 0.7 1区 数学 Q2 MATHEMATICS
V. Baladi, Mark F. Demers
{"title":"Thermodynamic formalism for dispersing billiards","authors":"V. Baladi, Mark F. Demers","doi":"10.3934/jmd.2022013","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>For any finite horizon Sinai billiard map <inline-formula><tex-math id=\"M1\">\\begin{document}$ T $\\end{document}</tex-math></inline-formula> on the two-torus, we find <inline-formula><tex-math id=\"M2\">\\begin{document}$ t_*>1 $\\end{document}</tex-math></inline-formula> such that for each <inline-formula><tex-math id=\"M3\">\\begin{document}$ t\\in (0,t_*) $\\end{document}</tex-math></inline-formula> there exists a unique equilibrium state <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\mu_t $\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\"M5\">\\begin{document}$ - t\\log J^uT $\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\mu_t $\\end{document}</tex-math></inline-formula> is <inline-formula><tex-math id=\"M7\">\\begin{document}$ T $\\end{document}</tex-math></inline-formula>-adapted. (In particular, the SRB measure is the unique equilibrium state for <inline-formula><tex-math id=\"M8\">\\begin{document}$ - \\log J^uT $\\end{document}</tex-math></inline-formula>.) We show that <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\mu_t $\\end{document}</tex-math></inline-formula> is exponentially mixing for Hölder observables, and the pressure function <inline-formula><tex-math id=\"M10\">\\begin{document}$ P(t) = \\sup_\\mu \\{h_\\mu -\\int t\\log J^uT d \\mu\\} $\\end{document}</tex-math></inline-formula> is analytic on <inline-formula><tex-math id=\"M11\">\\begin{document}$ (0,t_*) $\\end{document}</tex-math></inline-formula>. In addition, <inline-formula><tex-math id=\"M12\">\\begin{document}$ P(t) $\\end{document}</tex-math></inline-formula> is strictly convex if and only if <inline-formula><tex-math id=\"M13\">\\begin{document}$ \\log J^uT $\\end{document}</tex-math></inline-formula> is not <inline-formula><tex-math id=\"M14\">\\begin{document}$ \\mu_t $\\end{document}</tex-math></inline-formula>-a.e. cohomologous to a constant, while, if there exist <inline-formula><tex-math id=\"M15\">\\begin{document}$ t_a\\ne t_b $\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\"M16\">\\begin{document}$ \\mu_{t_a} = \\mu_{t_b} $\\end{document}</tex-math></inline-formula>, then <inline-formula><tex-math id=\"M17\">\\begin{document}$ P(t) $\\end{document}</tex-math></inline-formula> is affine on <inline-formula><tex-math id=\"M18\">\\begin{document}$ (0,t_*) $\\end{document}</tex-math></inline-formula>. An additional sparse recurrence condition gives <inline-formula><tex-math id=\"M19\">\\begin{document}$ \\lim_{t\\downarrow 0} P(t) = P(0) $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2022013","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

For any finite horizon Sinai billiard map \begin{document}$ T $\end{document} on the two-torus, we find \begin{document}$ t_*>1 $\end{document} such that for each \begin{document}$ t\in (0,t_*) $\end{document} there exists a unique equilibrium state \begin{document}$ \mu_t $\end{document} for \begin{document}$ - t\log J^uT $\end{document}, and \begin{document}$ \mu_t $\end{document} is \begin{document}$ T $\end{document}-adapted. (In particular, the SRB measure is the unique equilibrium state for \begin{document}$ - \log J^uT $\end{document}.) We show that \begin{document}$ \mu_t $\end{document} is exponentially mixing for Hölder observables, and the pressure function \begin{document}$ P(t) = \sup_\mu \{h_\mu -\int t\log J^uT d \mu\} $\end{document} is analytic on \begin{document}$ (0,t_*) $\end{document}. In addition, \begin{document}$ P(t) $\end{document} is strictly convex if and only if \begin{document}$ \log J^uT $\end{document} is not \begin{document}$ \mu_t $\end{document}-a.e. cohomologous to a constant, while, if there exist \begin{document}$ t_a\ne t_b $\end{document} with \begin{document}$ \mu_{t_a} = \mu_{t_b} $\end{document}, then \begin{document}$ P(t) $\end{document} is affine on \begin{document}$ (0,t_*) $\end{document}. An additional sparse recurrence condition gives \begin{document}$ \lim_{t\downarrow 0} P(t) = P(0) $\end{document}.

台球分散的热力学形式
对于两个环面上的任何有限水平西奈台球映射\beargin{document}$T$\end{document},我们发现\beargin{document}$T_*>1$\end{document},使得对于每个\beargin}$T\in(0,T_*)$\end},存在一个唯一的平衡状态\beargin{document}$\mu_T$\end{document},并且\begon{document}$\mu_t$\end{document}是\begon{document}$t$\end{document}-adapted.(特别地,SRB测度是\bbegin{document}$-\log J^uT$\end{document}的唯一平衡状态。此外,\begin{document}$P(t)$\end{document}是严格凸的,当且仅当\begin{document}$\log J^uT$\end{document}不是\bbegin{document}$\mu_t$\end{document}-a.e.上同胚到一个常数,而如果存在\ begin{document}$t_a\ne t_b$\end{document}与\ begin{document}$\mu_{t_a}=\ mu_{t_b}$\end{document},则\ begin}$P(t)$\end}在\ begin(document)$(0,t_*)$\eend{document}上仿射。一个额外的稀疏递归条件给出了\ begin{document}$\lim_{t\ downbarrow 0}P(t)=P(0)$\end{document}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including: Number theory Symplectic geometry Differential geometry Rigidity Quantum chaos Teichmüller theory Geometric group theory Harmonic analysis on manifolds. The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信