The effect of interfacial morphology on the magnetic and magnetocaloricproperties of ferromagnetic nanoparticles with core-shell geometry: a MonteCarlo Study

IF 1.4 Q3 PHYSICS, MULTIDISCIPLINARY
Y. Yüksel
{"title":"The effect of interfacial morphology on the magnetic and magnetocaloricproperties of ferromagnetic nanoparticles with core-shell geometry: a MonteCarlo Study","authors":"Y. Yüksel","doi":"10.55730/1300-0101.2689","DOIUrl":null,"url":null,"abstract":"Within the framework of Monte Carlo simulations, we investigate the magnetic and magnetocaloric properties of a nanocomposite particle composed of ferromagnetic core and shell layers. We found that isothermal magnetic entropy change may exhibit two peaks associated to two different phase transitions of the core and shell layers. We paid particular attention to the microscopic details of the core/shell interface. Our results suggest that for the large values of the interface exchange coupling, the full width at half maximum is expanded at the expense of the low temperature peak of isothermal entropy change |∆SM | whereas the high temperature peak is found to be more or less insensitive to varying exchange coupling. Besides, our simulations yield that magnetocaloric properties of the particles with a cubic core are enhanced in comparison with those composed of truncated cuboctahedral, spherical, octahedral, and asteroid shaped cores.","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0101.2689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Within the framework of Monte Carlo simulations, we investigate the magnetic and magnetocaloric properties of a nanocomposite particle composed of ferromagnetic core and shell layers. We found that isothermal magnetic entropy change may exhibit two peaks associated to two different phase transitions of the core and shell layers. We paid particular attention to the microscopic details of the core/shell interface. Our results suggest that for the large values of the interface exchange coupling, the full width at half maximum is expanded at the expense of the low temperature peak of isothermal entropy change |∆SM | whereas the high temperature peak is found to be more or less insensitive to varying exchange coupling. Besides, our simulations yield that magnetocaloric properties of the particles with a cubic core are enhanced in comparison with those composed of truncated cuboctahedral, spherical, octahedral, and asteroid shaped cores.
界面形态对核壳结构铁磁性纳米颗粒磁热性能的影响:MonteCarlo研究
在蒙特卡罗模拟的框架内,我们研究了由铁磁核和壳层组成的纳米复合粒子的磁性和磁热特性。我们发现等温磁熵变化可能出现两个峰,与核和壳层的两种不同相变有关。我们特别注意了核/壳界面的微观细节。研究结果表明,当界面交换耦合值较大时,等温熵变|∆SM |的低温峰在半最大值时的全宽度得到了扩展,而高温峰对交换耦合的变化基本不敏感。此外,我们的模拟结果表明,与由截断的立方体、球形、八面体和小行星形状的核组成的粒子相比,立方核粒子的磁热学性能得到了增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Turkish Journal of Physics
Turkish Journal of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
3.50
自引率
0.00%
发文量
8
期刊介绍: The Turkish Journal of Physics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language manuscripts in various fields of research in physics, astrophysics, and interdisciplinary topics related to physics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信