{"title":"DERIVATION OF FORMULA OF APPROXIMATE IDEALIZED HYPHAL CONTOUR AS BUILT-IN HYPHAL FITTING PROFILE","authors":"M. Jaffar, Megat Ayop","doi":"10.26480/msmk.02.2021.39.41","DOIUrl":null,"url":null,"abstract":"Hypha consists of two regions; cap (apex) and cylindrical shaft (subapex and mature combined). The hyphal-cap is the most critical part due to its dominant role in the hyphal-wall growth and mor- phogenesis. Just how the hyphal-wall growth is regulated in order to maintain its tubular shape has been the subject of much research for over 100 years. Here, we derived a formula of approximate idealized hyphal-contour based on gradients of secant lines joining a fixed coor- dinate at the starting hyphal-shaft to any coordinates on the contour. The formula is capable of being a control for experimental analysis in which it is not limited to one specific shape of the hyphal-like cell. Also, it potentially can play a role as built-in or ready-made hyphal-fitting profile that “best fits” microscopic images of various actual hyphal- like cells. In other words, given a microscopic image of hyphal-like cell, mycologists and microbiologists would not have to wonder about mathematical representation of its contour since the formula has pre- pared for it.","PeriodicalId":32521,"journal":{"name":"Matrix Science Mathematic","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Science Mathematic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/msmk.02.2021.39.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hypha consists of two regions; cap (apex) and cylindrical shaft (subapex and mature combined). The hyphal-cap is the most critical part due to its dominant role in the hyphal-wall growth and mor- phogenesis. Just how the hyphal-wall growth is regulated in order to maintain its tubular shape has been the subject of much research for over 100 years. Here, we derived a formula of approximate idealized hyphal-contour based on gradients of secant lines joining a fixed coor- dinate at the starting hyphal-shaft to any coordinates on the contour. The formula is capable of being a control for experimental analysis in which it is not limited to one specific shape of the hyphal-like cell. Also, it potentially can play a role as built-in or ready-made hyphal-fitting profile that “best fits” microscopic images of various actual hyphal- like cells. In other words, given a microscopic image of hyphal-like cell, mycologists and microbiologists would not have to wonder about mathematical representation of its contour since the formula has pre- pared for it.