Predator–prey dynamics with intraspecific competition and an Allee effect in the predator population

Q3 Mathematics
Erin N. Bodine, A. Yust
{"title":"Predator–prey dynamics with intraspecific competition and an Allee effect in the predator population","authors":"Erin N. Bodine, A. Yust","doi":"10.1080/23737867.2017.1282843","DOIUrl":null,"url":null,"abstract":"The study of the Allee effect on the stability of equilibria of predator-prey systems is of recent interest to mathematicians, ecologists, and conservationists. Many theoretical models that include the Allee effect result in an unstable coexistence equilibrium. However, empirical evidence suggests that predator–prey systems exhibiting density-dependent growth at small population densities still can achieve coexistence in the long term. We review an often cited model that incorporates an Allee effect in the predator population resulting in an unstable coexistence equilibrium, and then present a novel extension to this model which includes a term modeling intraspecific competition within the predator population. The additional term penalizes predator population growth for large predator to prey density ratios. We use equilibrium analysis to define the regions in the parameter space where the coexistence equilibrium is stable, and show that there exist biologically reasonable parameter sets which produce a stable coexistence equilibrium for our model.","PeriodicalId":37222,"journal":{"name":"Letters in Biomathematics","volume":"4 1","pages":"23 - 38"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23737867.2017.1282843","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Biomathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737867.2017.1282843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 15

Abstract

The study of the Allee effect on the stability of equilibria of predator-prey systems is of recent interest to mathematicians, ecologists, and conservationists. Many theoretical models that include the Allee effect result in an unstable coexistence equilibrium. However, empirical evidence suggests that predator–prey systems exhibiting density-dependent growth at small population densities still can achieve coexistence in the long term. We review an often cited model that incorporates an Allee effect in the predator population resulting in an unstable coexistence equilibrium, and then present a novel extension to this model which includes a term modeling intraspecific competition within the predator population. The additional term penalizes predator population growth for large predator to prey density ratios. We use equilibrium analysis to define the regions in the parameter space where the coexistence equilibrium is stable, and show that there exist biologically reasonable parameter sets which produce a stable coexistence equilibrium for our model.
捕食者种群中具有种内竞争和Allee效应的捕食者-猎物动态
Allee效应对捕食-被捕食系统平衡稳定性的研究最近引起了数学家、生态学家和自然保护主义者的兴趣。包括Allee效应在内的许多理论模型导致了不稳定的共存平衡。然而,经验证据表明,在小种群密度下表现出密度依赖性增长的捕食者-猎物系统仍然可以长期共存。我们回顾了一个经常被引用的模型,该模型在捕食者种群中引入了Allee效应,导致了不稳定的共存平衡,然后对该模型进行了新的扩展,其中包括一个术语,用于建模捕食者种群内的种内竞争。附加项惩罚捕食者种群的增长,因为捕食者与猎物的密度比很大。我们使用平衡分析来定义参数空间中共存平衡稳定的区域,并证明存在生物学上合理的参数集,这些参数集为我们的模型产生了稳定的共存平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Biomathematics
Letters in Biomathematics Mathematics-Statistics and Probability
CiteScore
2.00
自引率
0.00%
发文量
0
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信