{"title":"Deep Learning Approach in Predicting Property and Real Estate Indices","authors":"S. Hansun","doi":"10.15849/ijasca.220328.05","DOIUrl":null,"url":null,"abstract":"Abstract The real estate market is one of the most impacted sectors from the Corona Virus Disease 2019 (COVID-19) pandemic that happened in early 2020 globally. Here, we tried to apply an extension of the Long Short-Term Memory (LSTM) deep learning method, known as the Bidirectional LSTM (Bi-LSTM) networks for stock price prediction. Our focus is on six stocks that were included in the LiQuid45 (LQ45) property and real estate sectors. A simple three-layers Bi-LSTM network is proposed for predicting the stocks’ closing prices. We found that the prediction results fall in the reasonable prediction category, except for Pembangunan Perumahan Tbk (PTPP). Bumi Serpong Damai Tbk (BSDE) got the highest accuracy result with more than 90% score, while PTPP got the lowest score with less than 8% score. The proposed Bi-LSTM network could provide a baseline result for developing a good trading strategy. Keywords: Bi-LSTM networks, deep learning, LQ45, property and real estate, stock price prediction.","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.220328.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The real estate market is one of the most impacted sectors from the Corona Virus Disease 2019 (COVID-19) pandemic that happened in early 2020 globally. Here, we tried to apply an extension of the Long Short-Term Memory (LSTM) deep learning method, known as the Bidirectional LSTM (Bi-LSTM) networks for stock price prediction. Our focus is on six stocks that were included in the LiQuid45 (LQ45) property and real estate sectors. A simple three-layers Bi-LSTM network is proposed for predicting the stocks’ closing prices. We found that the prediction results fall in the reasonable prediction category, except for Pembangunan Perumahan Tbk (PTPP). Bumi Serpong Damai Tbk (BSDE) got the highest accuracy result with more than 90% score, while PTPP got the lowest score with less than 8% score. The proposed Bi-LSTM network could provide a baseline result for developing a good trading strategy. Keywords: Bi-LSTM networks, deep learning, LQ45, property and real estate, stock price prediction.
期刊介绍:
The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.