{"title":"Tensor-Centric Warfare III: Combat Dynamics with Delta-Strikes","authors":"V. Ivancevic, P. Pourbeik, D. Reid","doi":"10.4236/ica.2018.94009","DOIUrl":null,"url":null,"abstract":"This paper is the third part of the complex combat dynamics series, called tensor-centric warfare (for the first two parts, see [1] [2]). In the present paper, we extend the tensor combat model from [1] and [2] to model the dynamics of delta-strikes/missiles , which are temporally confined strong kinetic effects . The scenarios analyzed here include both deterministic and random delta-strikes which mimic single, multiple and continuous-time missile attacks. We also look at the bidirectional random strike as well as the general Hamilton-Langevin dynamics framework and provide an interpretation of the results obtained through simulation.","PeriodicalId":62904,"journal":{"name":"智能控制与自动化(英文)","volume":"09 1","pages":"107-122"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能控制与自动化(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/ica.2018.94009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper is the third part of the complex combat dynamics series, called tensor-centric warfare (for the first two parts, see [1] [2]). In the present paper, we extend the tensor combat model from [1] and [2] to model the dynamics of delta-strikes/missiles , which are temporally confined strong kinetic effects . The scenarios analyzed here include both deterministic and random delta-strikes which mimic single, multiple and continuous-time missile attacks. We also look at the bidirectional random strike as well as the general Hamilton-Langevin dynamics framework and provide an interpretation of the results obtained through simulation.