Gai Zhang, Yufan Zhang, A. Tan, Hongwei Zhou, Weifeng Zhao, Weixing Chen
{"title":"The enhanced activity of dinuclear metallophthalocyanines amino-functionalized carbon nanotube-based oxygen reduction reaction catalysts","authors":"Gai Zhang, Yufan Zhang, A. Tan, Hongwei Zhou, Weifeng Zhao, Weixing Chen","doi":"10.1177/18479804221096540","DOIUrl":null,"url":null,"abstract":"Dinuclear metallophthalocyanines Fe2Pc2(CP)4 containing carboxyl substitutes were wrapped with amino-functionalized carbon nanotubes (MWCNTs-NH2) to enhance electrocatalytic activity for oxygen reduction reaction (ORR) using a facile “in situ” amidation reaction. The morphological characteristics and chemical environment of the Fe2Pc2(CP)4/MWCNTs-NH2 composites were characterized by scanning electron microscope (SEM), X-ray diffraction, Ultraviolet–visible (UV-Vis), Fourier Transform infrared (FTIR), and X-ray photoelectron spectroscopy. The electrocatalytic activity of ORR was tested and analyzed by cyclic voltammetry and linear sweep voltammetry. The results showed that the π–π interactions between the Fe2Pc2(CP)4 and MWCNTs-NH2 dramatically enhanced the π electron density in the conjugated structure, and oxygen could be reduced much more easily. Moreover, the oxygen reduction reactions mainly proceeded a one-step four electron process for Fe2Pc2(CP)4/MWCNTs-NH2 catalysts. The dispersion and electrocatalytic performance of M2Pc2Rn had be enhanced after being loaded on functionalized carbon nanotubes.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials and Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/18479804221096540","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Dinuclear metallophthalocyanines Fe2Pc2(CP)4 containing carboxyl substitutes were wrapped with amino-functionalized carbon nanotubes (MWCNTs-NH2) to enhance electrocatalytic activity for oxygen reduction reaction (ORR) using a facile “in situ” amidation reaction. The morphological characteristics and chemical environment of the Fe2Pc2(CP)4/MWCNTs-NH2 composites were characterized by scanning electron microscope (SEM), X-ray diffraction, Ultraviolet–visible (UV-Vis), Fourier Transform infrared (FTIR), and X-ray photoelectron spectroscopy. The electrocatalytic activity of ORR was tested and analyzed by cyclic voltammetry and linear sweep voltammetry. The results showed that the π–π interactions between the Fe2Pc2(CP)4 and MWCNTs-NH2 dramatically enhanced the π electron density in the conjugated structure, and oxygen could be reduced much more easily. Moreover, the oxygen reduction reactions mainly proceeded a one-step four electron process for Fe2Pc2(CP)4/MWCNTs-NH2 catalysts. The dispersion and electrocatalytic performance of M2Pc2Rn had be enhanced after being loaded on functionalized carbon nanotubes.
期刊介绍:
Nanomaterials and Nanotechnology is a JCR ranked, peer-reviewed open access journal addressed to a cross-disciplinary readership including scientists, researchers and professionals in both academia and industry with an interest in nanoscience and nanotechnology. The scope comprises (but is not limited to) the fundamental aspects and applications of nanoscience and nanotechnology