Kartheek Srinivas Chidella, Vijay Bharathi Dasari, J. Anireddy
{"title":"Ultra-Sensitive LC-MS/MS Method for the Trace Level Quantification of Six Potential Genotoxic Nitrosamine Impurities in Telmisartan","authors":"Kartheek Srinivas Chidella, Vijay Bharathi Dasari, J. Anireddy","doi":"10.4236/AJAC.2021.126014","DOIUrl":null,"url":null,"abstract":"Nitrosamine impurities are potentially genotoxic which are considered under cohort of concern as per ICH M7 guidelines and need to be controlled at trace levels during quantification in drug substances and drug products for safe human consumption. Recent regulatory requirements also suggest the need to have highly sensitive analytical methods for the accurate quantification of Nitrosamine impurities. In this paper we have presented simple, rapid and ultra-sensitive LC-MS/MS method for six potential genotoxic nitrosamine impurities: N-Nitroso dimethyl amine (NDMA), N-Nitroso diethyl amine (NDEA), N-Nitroso Ethyl Iso propylamine (NEIPA), N-Nitroso-N-methyl-4-aminobutyric acid (NMBA) N-Nitroso diisopropylamino (NDIPA) and N-Nitroso dibutyl amine (NDBA) with a LOQ of 0.004 ppm. Chromatographic separation is achieved using Zorbax SB C18 150 × 3.0 mm, 3.5 μ column with 0.1% formic acid in water as mobile phase A and 0.1% formic acid in methanol as mobile phase B at a flow rate of 0.3 ml/min using gradient mode of elution at a total run time of 18 minutes. Six nitrosamine impurities are successfully ionized and quantified in positive mode of atmospheric pressure chemical ionization (APCI) using multiple reaction monitoring (MRM). Method validation is performed as per ICH guidelines evaluating the limit of quantification and detection and found to give good S/N ratios with good linearity range of 0.002 - 2 ppm with regression coefficient >0.99 for all the six nitrosamine impurities. Method recoveries are established using three-step sample preparation protocol and are found to be satisfactory within 80% - 120%. The method can be used routinely applied for the detection of Nitrosamines in Telmisartan at a concentration of 1.5 ng/ml (0.03 ppm with respect to telmisartan concentration of 50 mg/ml).","PeriodicalId":63216,"journal":{"name":"美国分析化学(英文)","volume":"12 1","pages":"227-240"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"美国分析化学(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/AJAC.2021.126014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Nitrosamine impurities are potentially genotoxic which are considered under cohort of concern as per ICH M7 guidelines and need to be controlled at trace levels during quantification in drug substances and drug products for safe human consumption. Recent regulatory requirements also suggest the need to have highly sensitive analytical methods for the accurate quantification of Nitrosamine impurities. In this paper we have presented simple, rapid and ultra-sensitive LC-MS/MS method for six potential genotoxic nitrosamine impurities: N-Nitroso dimethyl amine (NDMA), N-Nitroso diethyl amine (NDEA), N-Nitroso Ethyl Iso propylamine (NEIPA), N-Nitroso-N-methyl-4-aminobutyric acid (NMBA) N-Nitroso diisopropylamino (NDIPA) and N-Nitroso dibutyl amine (NDBA) with a LOQ of 0.004 ppm. Chromatographic separation is achieved using Zorbax SB C18 150 × 3.0 mm, 3.5 μ column with 0.1% formic acid in water as mobile phase A and 0.1% formic acid in methanol as mobile phase B at a flow rate of 0.3 ml/min using gradient mode of elution at a total run time of 18 minutes. Six nitrosamine impurities are successfully ionized and quantified in positive mode of atmospheric pressure chemical ionization (APCI) using multiple reaction monitoring (MRM). Method validation is performed as per ICH guidelines evaluating the limit of quantification and detection and found to give good S/N ratios with good linearity range of 0.002 - 2 ppm with regression coefficient >0.99 for all the six nitrosamine impurities. Method recoveries are established using three-step sample preparation protocol and are found to be satisfactory within 80% - 120%. The method can be used routinely applied for the detection of Nitrosamines in Telmisartan at a concentration of 1.5 ng/ml (0.03 ppm with respect to telmisartan concentration of 50 mg/ml).