{"title":"Phase-Only Multilevel LINC Architecture for Linearizing Chireix Outphasing Power Amplifiers","authors":"Stefan Mueller, R. Negra","doi":"10.1109/LMWC.2022.3173740","DOIUrl":null,"url":null,"abstract":"This letter presents a distinct approach to linearize Chireix outphasing power amplifiers (PAs), which is leveraging the multilevel linear-amplification-with-nonlinear-components (LINC) concept. The proposed architecture operates only on phase-modulated signals and is therefore compatible with digital-like signal generation and distribution. The analysis of the architecture and a calibration algorithm are presented. The validity of the proposed concept is verified by the implementation of a prototype operating at 3.5 GHz, providing 42 dBm of peak output power. The prototype achieves −40.8 and −39.4 dB adjacent channel leakage ratio (ACLR) and 1.73% and 1.94% error vector magnitude (EVM) for a 64- quadrature amplitude modulation (QAM) modulated signal with 6.5 dB PAPR at 10 and 20 MHz bandwidth (BW), respectively. For an orthogonal frequency-division multiplexing (OFDM) modulated signal with 8.3 dB PAPR at 10 MHz BW, the ACLR and EVM are −40.2 dB and 2.64%, respectively.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1255-1258"},"PeriodicalIF":2.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3173740","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This letter presents a distinct approach to linearize Chireix outphasing power amplifiers (PAs), which is leveraging the multilevel linear-amplification-with-nonlinear-components (LINC) concept. The proposed architecture operates only on phase-modulated signals and is therefore compatible with digital-like signal generation and distribution. The analysis of the architecture and a calibration algorithm are presented. The validity of the proposed concept is verified by the implementation of a prototype operating at 3.5 GHz, providing 42 dBm of peak output power. The prototype achieves −40.8 and −39.4 dB adjacent channel leakage ratio (ACLR) and 1.73% and 1.94% error vector magnitude (EVM) for a 64- quadrature amplitude modulation (QAM) modulated signal with 6.5 dB PAPR at 10 and 20 MHz bandwidth (BW), respectively. For an orthogonal frequency-division multiplexing (OFDM) modulated signal with 8.3 dB PAPR at 10 MHz BW, the ACLR and EVM are −40.2 dB and 2.64%, respectively.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.