A numerical scheme for diffusion-convection equation with piecewise constant arguments

IF 1.1 Q2 MATHEMATICS, APPLIED
M. Esmaeilzadeh, H. Najafi, H. Aminikhah
{"title":"A numerical scheme for diffusion-convection equation with piecewise constant arguments","authors":"M. Esmaeilzadeh, H. Najafi, H. Aminikhah","doi":"10.22034/CMDE.2020.31155.1468","DOIUrl":null,"url":null,"abstract":"This article is concerned with using a finite difference method, namely the theta-methods, to solve the diffusion-convection equation with piecewise constant arguments.The stability of this scheme is also obtained. Since there are not many published results on the numerical solution of this sort of differential equation and because of the importance of the above equation in the physics and engineering sciences, we have decided to study and present a stable numerical solution for the above mentioned problem. At the end of article some experiments are done to demonstrate the stability of the scheme. We also draw the figures for the numerical and analytical solutions which confirm ou results.The numerical solutions have also been compared with analytical solutions.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":"8 1","pages":"573-584"},"PeriodicalIF":1.1000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.31155.1468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6

Abstract

This article is concerned with using a finite difference method, namely the theta-methods, to solve the diffusion-convection equation with piecewise constant arguments.The stability of this scheme is also obtained. Since there are not many published results on the numerical solution of this sort of differential equation and because of the importance of the above equation in the physics and engineering sciences, we have decided to study and present a stable numerical solution for the above mentioned problem. At the end of article some experiments are done to demonstrate the stability of the scheme. We also draw the figures for the numerical and analytical solutions which confirm ou results.The numerical solutions have also been compared with analytical solutions.
具有分段常变元的扩散-对流方程的一种数值格式
本文使用有限差分方法,即θ方法,求解具有分段常数自变量的扩散-对流方程。还得到了该方案的稳定性。由于关于这类微分方程的数值解的公开结果不多,并且由于上述方程在物理和工程科学中的重要性,我们决定研究并提出上述问题的稳定数值解。文章最后通过实验验证了该方案的稳定性。我们还绘制了数值和分析解的图形,这些图形确定了结果。数值解也与解析解进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信