{"title":"Rotational $K^{\\alpha}$-translators in Minkowski Space","authors":"M. Aydın, Rafael L'opez","doi":"10.11650/tjm/230602","DOIUrl":null,"url":null,"abstract":"A spacelike surface in Minkowski space $\\mathbb{R}_1^3$ is called a $K^\\alpha$-translator of the flow by the powers of Gauss curvature if satisfies $K^\\alpha= \\langle N,\\vec{v}\\rangle$, $\\alpha \\neq 0$, where $K$ is the Gauss curvature, $N$ is the unit normal vector field and $\\vec{v}$ is a direction of $\\mathbb{R}_1^3$. In this paper, we classify all rotational $K^\\alpha$-translators. This classification will depend on the causal character of the rotation axis. Although the theory of the $K^\\alpha$-flow holds for spacelike surfaces, the equation describing $K^\\alpha$-translators is still valid for timelike surfaces. So we also investigate the timelike rotational surfaces that satisfy the same prescribing Gauss curvature equation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/230602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A spacelike surface in Minkowski space $\mathbb{R}_1^3$ is called a $K^\alpha$-translator of the flow by the powers of Gauss curvature if satisfies $K^\alpha= \langle N,\vec{v}\rangle$, $\alpha \neq 0$, where $K$ is the Gauss curvature, $N$ is the unit normal vector field and $\vec{v}$ is a direction of $\mathbb{R}_1^3$. In this paper, we classify all rotational $K^\alpha$-translators. This classification will depend on the causal character of the rotation axis. Although the theory of the $K^\alpha$-flow holds for spacelike surfaces, the equation describing $K^\alpha$-translators is still valid for timelike surfaces. So we also investigate the timelike rotational surfaces that satisfy the same prescribing Gauss curvature equation.