Powder metallurgy processing of Nb-modified near β titanium alloys prepared with elemental powders

IF 1.9 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
V. Opini, J. B. Fogagnolo, V. A. Borrás, R. Caram, J. Soyama
{"title":"Powder metallurgy processing of Nb-modified near β titanium alloys prepared with elemental powders","authors":"V. Opini, J. B. Fogagnolo, V. A. Borrás, R. Caram, J. Soyama","doi":"10.1080/00325899.2023.2228093","DOIUrl":null,"url":null,"abstract":"ABSTRACT Near β Ti alloys typically show high specific strength and provide a wide spectrum of mechanical properties with different heat treatments. In this work, a commercial near β Ti alloy Ti-5553 (Ti-5Al-5V-5Mo-3Cr-0.5Fe) was prepared through powder metallurgy using the blended elemental powder approach. Additionally, alloy modifications with 6 wt.% Nb (Ti-6Nb-5Al-2.5V-5Mo-3Cr-0.5Fe) and 12 wt.% Nb (Ti-12Nb-5Al-5Mo-3Cr-0.5Fe) were investigated. Specimens were prepared by uniaxial cold compaction of blended powders at room temperature with sintering conducted at 1300°C for 2 h under Ar atmosphere. Microstructure investigation revealed reasonable homogenisation of alloying elements and colony sizes in the order of 80-100 μm with porosity below 10%. Moreover, the bending strength of as-sintered Ti-12Nb-5Al-5Mo-3Cr-0.5Fe was about 850 MPa and the micro-Vickers hardness was approximately 370 HV. The alloy modifications with Nb increased strength without loss in flexural strain.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2023.2228093","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Near β Ti alloys typically show high specific strength and provide a wide spectrum of mechanical properties with different heat treatments. In this work, a commercial near β Ti alloy Ti-5553 (Ti-5Al-5V-5Mo-3Cr-0.5Fe) was prepared through powder metallurgy using the blended elemental powder approach. Additionally, alloy modifications with 6 wt.% Nb (Ti-6Nb-5Al-2.5V-5Mo-3Cr-0.5Fe) and 12 wt.% Nb (Ti-12Nb-5Al-5Mo-3Cr-0.5Fe) were investigated. Specimens were prepared by uniaxial cold compaction of blended powders at room temperature with sintering conducted at 1300°C for 2 h under Ar atmosphere. Microstructure investigation revealed reasonable homogenisation of alloying elements and colony sizes in the order of 80-100 μm with porosity below 10%. Moreover, the bending strength of as-sintered Ti-12Nb-5Al-5Mo-3Cr-0.5Fe was about 850 MPa and the micro-Vickers hardness was approximately 370 HV. The alloy modifications with Nb increased strength without loss in flexural strain.
元素粉末制备nb改性近β钛合金的粉末冶金工艺研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Powder Metallurgy
Powder Metallurgy 工程技术-冶金工程
CiteScore
2.90
自引率
7.10%
发文量
30
审稿时长
3 months
期刊介绍: Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信