Bi-stable dynamics of a host-pathogen model

Q2 Agricultural and Biological Sciences
R. Anguelov, R. Bekker, Y. Dumont
{"title":"Bi-stable dynamics of a host-pathogen model","authors":"R. Anguelov, R. Bekker, Y. Dumont","doi":"10.11145/J.BIOMATH.2019.01.029","DOIUrl":null,"url":null,"abstract":"Crop host-pathogen interaction have been a main issue for decades, in particular for food security. In this paper, we focus on the modeling and long term behavior of soil-borne pathogens. We first develop a new compartmental temporal model, which exhibits bi-stable asymptotical dynamics. To investigate the long term behavior, we use LaSalle Invariance Principle to derive sufficient conditions for global asymptotic stability of the pathogen free equilibrium and monotone dynamical systems theory to provide sufficient conditions for permanence of the system. Finally, we develop a partially degenerate reaction diffusion system, providing a numerical exploration based on the results obtained for the temporal system. We show that a traveling wave solution may exist where the speed of the wave follows a power law.","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11145/J.BIOMATH.2019.01.029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 3

Abstract

Crop host-pathogen interaction have been a main issue for decades, in particular for food security. In this paper, we focus on the modeling and long term behavior of soil-borne pathogens. We first develop a new compartmental temporal model, which exhibits bi-stable asymptotical dynamics. To investigate the long term behavior, we use LaSalle Invariance Principle to derive sufficient conditions for global asymptotic stability of the pathogen free equilibrium and monotone dynamical systems theory to provide sufficient conditions for permanence of the system. Finally, we develop a partially degenerate reaction diffusion system, providing a numerical exploration based on the results obtained for the temporal system. We show that a traveling wave solution may exist where the speed of the wave follows a power law.
宿主-病原体模型的双稳态动力学
几十年来,作物-宿主-病原体的相互作用一直是一个主要问题,特别是在粮食安全方面。在本文中,我们重点研究了土壤传播病原体的建模和长期行为。我们首先开发了一个新的房室时间模型,该模型表现出双稳态渐近动力学。为了研究系统的长期行为,我们利用拉萨尔不变原理导出了无病原体平衡全局渐近稳定的充分条件,并利用单调动力系统理论给出了系统持久性的充分条件。最后,我们发展了一个部分简并的反应扩散系统,在时间系统的结果的基础上进行了数值探索。我们证明,当波的速度遵循幂律时,可能存在行波解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomath
Biomath Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
6
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信