Joseph R. Benjamin, J. Dunham, Kara J. Anlauf-Dunn, E. Eliason
{"title":"Climate vulnerability for a desert fish: integrating hydrologic exposures, adaptive capacity, and growth potential","authors":"Joseph R. Benjamin, J. Dunham, Kara J. Anlauf-Dunn, E. Eliason","doi":"10.1139/cjfas-2022-0280","DOIUrl":null,"url":null,"abstract":"Climate vulnerability can be evaluated by multiple organismal responses. We developed a climate vulnerability framework focused on growth potential of redband trout (Oncorhynchus mykiss newberri). We employed a bioenergetics model to evaluate spatial variability in growth potential in relation to constraints on body size imposed by stream flow, physiological responses linked to variable thermal regimes, and variation in physiological adaptive capacity inferred from field respirometry. Results indicate that maximum size (g) of redband trout increases with stream discharge. Growth potential is strongly linked to body size, with smaller individuals performing better relative to larger fish in cooler thermal regimes. Annual patterns of growth varied among sites and were related to body size and physiological adaptive capacity. Putatively cold-adapted fish were more likely to exhibit bimodal growth with peaks in spring and autumn, whereas warm-adapted fish exhibit a summer peak in growth potential. These findings offer insights into how climate vulnerability of stream-living fish can be conditioned on both stream flow and thermal regimes, and the potential for physiological adaptive capacity to influence vulnerability.","PeriodicalId":9515,"journal":{"name":"Canadian Journal of Fisheries and Aquatic Sciences","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Fisheries and Aquatic Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjfas-2022-0280","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Climate vulnerability can be evaluated by multiple organismal responses. We developed a climate vulnerability framework focused on growth potential of redband trout (Oncorhynchus mykiss newberri). We employed a bioenergetics model to evaluate spatial variability in growth potential in relation to constraints on body size imposed by stream flow, physiological responses linked to variable thermal regimes, and variation in physiological adaptive capacity inferred from field respirometry. Results indicate that maximum size (g) of redband trout increases with stream discharge. Growth potential is strongly linked to body size, with smaller individuals performing better relative to larger fish in cooler thermal regimes. Annual patterns of growth varied among sites and were related to body size and physiological adaptive capacity. Putatively cold-adapted fish were more likely to exhibit bimodal growth with peaks in spring and autumn, whereas warm-adapted fish exhibit a summer peak in growth potential. These findings offer insights into how climate vulnerability of stream-living fish can be conditioned on both stream flow and thermal regimes, and the potential for physiological adaptive capacity to influence vulnerability.
期刊介绍:
The Canadian Journal of Fisheries and Aquatic Sciences is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on -omics, cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science.