On the action of the implicative closure operator on the set of partial functions of the multivalued logic

IF 0.3 Q4 MATHEMATICS, APPLIED
S. Marchenkov
{"title":"On the action of the implicative closure operator on the set of partial functions of the multivalued logic","authors":"S. Marchenkov","doi":"10.1515/dma-2021-0014","DOIUrl":null,"url":null,"abstract":"Abstract On the set Pk∗ $\\begin{array}{} \\displaystyle P_k^* \\end{array}$ of partial functions of the k-valued logic, we consider the implicative closure operator, which is the extension of the parametric closure operator via the logical implication. It is proved that, for any k ⩾ 2, the number of implicative closed classes in Pk∗ $\\begin{array}{} \\displaystyle P_k^* \\end{array}$ is finite. For any k ⩾ 2, in Pk∗ $\\begin{array}{} \\displaystyle P_k^* \\end{array}$ two series of implicative closed classes are defined. We show that these two series exhaust all implicative precomplete classes. We also identify all 8 atoms of the lattice of implicative closed classes in P3∗ $\\begin{array}{} \\displaystyle P_3^* \\end{array}$.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"31 1","pages":"155 - 164"},"PeriodicalIF":0.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/dma-2021-0014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2021-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract On the set Pk∗ $\begin{array}{} \displaystyle P_k^* \end{array}$ of partial functions of the k-valued logic, we consider the implicative closure operator, which is the extension of the parametric closure operator via the logical implication. It is proved that, for any k ⩾ 2, the number of implicative closed classes in Pk∗ $\begin{array}{} \displaystyle P_k^* \end{array}$ is finite. For any k ⩾ 2, in Pk∗ $\begin{array}{} \displaystyle P_k^* \end{array}$ two series of implicative closed classes are defined. We show that these two series exhaust all implicative precomplete classes. We also identify all 8 atoms of the lattice of implicative closed classes in P3∗ $\begin{array}{} \displaystyle P_3^* \end{array}$.
关于蕴涵闭包算子在多值逻辑部分函数集上的作用
在k值逻辑的偏函数集合Pk * $\begin{array}{} \displaystyle P_k^* \end{array}$上,我们考虑隐含闭包算子,它是参数闭包算子经逻辑蕴涵的扩展。证明了,对于任何k大于或等于2,Pk∗$\begin{array}{} \displaystyle P_k^* \end{array}$中的隐含封闭类的数量是有限的。对于任何k小于2,在Pk∗$\begin{array}{} \displaystyle P_k^* \end{array}$中定义了两个系列的隐含封闭类。我们证明了这两个系列用尽了所有隐含的预完成类。我们还鉴定了P3 * $\begin{array}{} \displaystyle P_3^* \end{array}$中隐含闭类晶格的全部8个原子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信