{"title":"Identification of an Inverse Source Problem in a Fractional Partial Differential Equation Based on Sinc-Galerkin Method and TSVD Regularization","authors":"A. Safaie, A. H. Salehi Shayegan, M. Shahriari","doi":"10.1515/cmam-2022-0178","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, using Sinc-Galerkin method and TSVD regularization, an approximation of the quasi-solution to an inverse source problem is obtained. To do so, the solution of direct problem is obtained by the Sinc-Galerkin method, and this solution is applied in a least squares cost functional. Then, to obtain an approximation of the quasi-solution, we minimize the cost functional by TSVD regularization. Error analysis and convergence of the proposed method are investigated. In addition, at the end, four numerical examples are given in details to show the efficiency and accuracy of the proposed method.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0178","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, using Sinc-Galerkin method and TSVD regularization, an approximation of the quasi-solution to an inverse source problem is obtained. To do so, the solution of direct problem is obtained by the Sinc-Galerkin method, and this solution is applied in a least squares cost functional. Then, to obtain an approximation of the quasi-solution, we minimize the cost functional by TSVD regularization. Error analysis and convergence of the proposed method are investigated. In addition, at the end, four numerical examples are given in details to show the efficiency and accuracy of the proposed method.
期刊介绍:
The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs.
CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics.
The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.