Learning Forecast-Efficient Yield Curve Factor Decompositions with Neural Networks

IF 1.1 Q3 ECONOMICS
Piero C. Kauffmann, H. H. Takada, Ana T. Terada, Julio Michael Stern
{"title":"Learning Forecast-Efficient Yield Curve Factor Decompositions with Neural Networks","authors":"Piero C. Kauffmann, H. H. Takada, Ana T. Terada, Julio Michael Stern","doi":"10.3390/econometrics10020015","DOIUrl":null,"url":null,"abstract":"Most factor-based forecasting models for the term structure of interest rates depend on a fixed number of factor loading functions that have to be specified in advance. In this study, we relax this assumption by building a yield curve forecasting model that learns new factor decompositions directly from data for an arbitrary number of factors, combining a Gaussian linear state-space model with a neural network that generates smooth yield curve factor loadings. In order to control the model complexity, we define prior distributions with a shrinkage effect over the model parameters, and we present how to obtain computationally efficient maximum a posteriori numerical estimates using the Kalman filter and automatic differentiation. An evaluation of the model’s performance on 14 years of historical data of the Brazilian yield curve shows that the proposed technique was able to obtain better overall out-of-sample forecasts than traditional approaches, such as the dynamic Nelson and Siegel model and its extensions.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/econometrics10020015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Most factor-based forecasting models for the term structure of interest rates depend on a fixed number of factor loading functions that have to be specified in advance. In this study, we relax this assumption by building a yield curve forecasting model that learns new factor decompositions directly from data for an arbitrary number of factors, combining a Gaussian linear state-space model with a neural network that generates smooth yield curve factor loadings. In order to control the model complexity, we define prior distributions with a shrinkage effect over the model parameters, and we present how to obtain computationally efficient maximum a posteriori numerical estimates using the Kalman filter and automatic differentiation. An evaluation of the model’s performance on 14 years of historical data of the Brazilian yield curve shows that the proposed technique was able to obtain better overall out-of-sample forecasts than traditional approaches, such as the dynamic Nelson and Siegel model and its extensions.
基于神经网络的学习预测高效产量曲线因子分解
利率期限结构的大多数基于因素的预测模型取决于必须预先指定的固定数量的因素负载函数。在这项研究中,我们通过建立一个产量曲线预测模型来放松这一假设,该模型直接从任意数量的因素的数据中学习新的因素分解,将高斯线性状态空间模型与生成平滑产量曲线因素负载的神经网络相结合。为了控制模型的复杂性,我们定义了在模型参数上具有收缩效应的先验分布,并介绍了如何使用卡尔曼滤波器和自动微分来获得计算高效的最大后验数值估计。对巴西产量曲线14年历史数据的模型性能评估表明,与传统方法(如动态Nelson和Siegel模型及其扩展)相比,所提出的技术能够获得更好的总体样本外预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信