Ultracompact Waveguide for an Optical Network-on-Chip with a Vacuum Gap Based on Surface Plasmon Polaritons

IF 0.6 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhi-Xun Liang, Yun-Ying Shi, Qi-Ming Wu, Yun-Fei Yi, Peng Tang
{"title":"Ultracompact Waveguide for an Optical Network-on-Chip with a Vacuum Gap Based on Surface Plasmon Polaritons","authors":"Zhi-Xun Liang, Yun-Ying Shi, Qi-Ming Wu, Yun-Fei Yi, Peng Tang","doi":"10.1166/jno.2023.3421","DOIUrl":null,"url":null,"abstract":"In an optical network-on-chip, optical waveguides play a crucial role in transmitting optical signals. Therefore, it is essential for optical waveguides to have a compact size and low insertion loss. This paper proposes a new type of optical waveguide with a vacuum gap based on surface\n plasmon polaritons. By utilizing surface plasmon polariton technology, the proposed waveguide reduces scattering attenuation caused by hybrid surface plasmon polaritons, saves space in the network-on-chip, and enables the integration of more devices on the chip while maintaining an ultracompact\n size requirement. Finite-Difference Time-Domain (FDTD) simulations and comparisons are performed between a conventional Si waveguide and two types of surface plasmon polariton waveguides. The results demonstrate that the designed waveguide exhibits excellent confinement capabilities even when\n the waveguide width is only 100 nm, with an insertion loss of 0.32 dB/μm. The relevant waveguide parameters are studied and optimized, providing a theoretical basis for the development of ultracompact gap surface plasmon polariton waveguides.","PeriodicalId":16446,"journal":{"name":"Journal of Nanoelectronics and Optoelectronics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoelectronics and Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jno.2023.3421","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In an optical network-on-chip, optical waveguides play a crucial role in transmitting optical signals. Therefore, it is essential for optical waveguides to have a compact size and low insertion loss. This paper proposes a new type of optical waveguide with a vacuum gap based on surface plasmon polaritons. By utilizing surface plasmon polariton technology, the proposed waveguide reduces scattering attenuation caused by hybrid surface plasmon polaritons, saves space in the network-on-chip, and enables the integration of more devices on the chip while maintaining an ultracompact size requirement. Finite-Difference Time-Domain (FDTD) simulations and comparisons are performed between a conventional Si waveguide and two types of surface plasmon polariton waveguides. The results demonstrate that the designed waveguide exhibits excellent confinement capabilities even when the waveguide width is only 100 nm, with an insertion loss of 0.32 dB/μm. The relevant waveguide parameters are studied and optimized, providing a theoretical basis for the development of ultracompact gap surface plasmon polariton waveguides.
基于表面等离子激元极化子的真空间隙片上光网络超紧凑波导
在片上光网络中,光波导在传输光信号中起着至关重要的作用。因此,光波导必须具有紧凑的尺寸和低的插入损耗。本文提出了一种基于表面等离子激元极化的新型真空间隙光波导。通过利用表面等离子激元技术,该波导减少了混合表面等离子激元引起的散射衰减,节省了片上网络的空间,在保持超紧凑尺寸要求的同时,可以在芯片上集成更多的器件。对传统硅波导和两种表面等离激元极化子波导进行了时域有限差分仿真和比较。结果表明,当波导宽度仅为100 nm时,所设计的波导具有良好的约束性能,插入损耗为0.32 dB/μm。对相关波导参数进行了研究和优化,为超紧凑间隙表面等离子激元极化子波导的研制提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanoelectronics and Optoelectronics
Journal of Nanoelectronics and Optoelectronics 工程技术-工程:电子与电气
自引率
16.70%
发文量
48
审稿时长
12.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信