{"title":"Mining skyline frequent-utility patterns from big data environment based on MapReduce framework","authors":"J. Wu, Ranran Li, Mu-En Wu, Jerry Chun‐wei Lin","doi":"10.3233/ida-220756","DOIUrl":null,"url":null,"abstract":"When the concentration focuses on data mining, frequent itemset mining (FIM) and high-utility itemset mining (HUIM) are commonly addressed and researched. Many related algorithms are proposed to reveal the general relationship between utility, frequency, and items in transaction databases. Although these algorithms can mine FIMs or HUIMs quickly, these algorithms merely take into account frequency or utility as a unilateral criterion for itemsets but ignore the concurrent itemsets, which are often more valuable for reference. A new skyline framework has been presented to mine frequent high utility patterns (SFUPs) to better support user decision-making. Several new algorithms have been proposed one after another. However, the Internet of Things (IoT), mobile Internet, and traditional Internet are generating massive amounts of data every day, and these cutting-edge standalone algorithms can not satisfy the new challenge of finding interesting patterns from this data. Big Data uses a distributed architecture in the form of cloud computing to filter and process this data to extract useful information. This paper proposes a novel parallel algorithm on Hadoop as a three-stage iterative algorithm based on MapReduce. MapReduce is used to divide the mining tasks of the whole large data set into multiple independent sub-tasks to find frequent and high utility patterns in parallel. Numerous experiments were done in this paper, and from the results, the algorithm can handle large datasets and show good performance on Hadoop clusters.","PeriodicalId":50355,"journal":{"name":"Intelligent Data Analysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Data Analysis","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ida-220756","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
When the concentration focuses on data mining, frequent itemset mining (FIM) and high-utility itemset mining (HUIM) are commonly addressed and researched. Many related algorithms are proposed to reveal the general relationship between utility, frequency, and items in transaction databases. Although these algorithms can mine FIMs or HUIMs quickly, these algorithms merely take into account frequency or utility as a unilateral criterion for itemsets but ignore the concurrent itemsets, which are often more valuable for reference. A new skyline framework has been presented to mine frequent high utility patterns (SFUPs) to better support user decision-making. Several new algorithms have been proposed one after another. However, the Internet of Things (IoT), mobile Internet, and traditional Internet are generating massive amounts of data every day, and these cutting-edge standalone algorithms can not satisfy the new challenge of finding interesting patterns from this data. Big Data uses a distributed architecture in the form of cloud computing to filter and process this data to extract useful information. This paper proposes a novel parallel algorithm on Hadoop as a three-stage iterative algorithm based on MapReduce. MapReduce is used to divide the mining tasks of the whole large data set into multiple independent sub-tasks to find frequent and high utility patterns in parallel. Numerous experiments were done in this paper, and from the results, the algorithm can handle large datasets and show good performance on Hadoop clusters.
期刊介绍:
Intelligent Data Analysis provides a forum for the examination of issues related to the research and applications of Artificial Intelligence techniques in data analysis across a variety of disciplines. These techniques include (but are not limited to): all areas of data visualization, data pre-processing (fusion, editing, transformation, filtering, sampling), data engineering, database mining techniques, tools and applications, use of domain knowledge in data analysis, big data applications, evolutionary algorithms, machine learning, neural nets, fuzzy logic, statistical pattern recognition, knowledge filtering, and post-processing. In particular, papers are preferred that discuss development of new AI related data analysis architectures, methodologies, and techniques and their applications to various domains.