Distributed deep learning approach for intrusion detection system in industrial control systems based on big data technique and transfer learning

IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ahlem Abid, F. Jemili, O. Korbaa
{"title":"Distributed deep learning approach for intrusion detection system in industrial control systems based on big data technique and transfer learning","authors":"Ahlem Abid, F. Jemili, O. Korbaa","doi":"10.1080/24751839.2023.2239617","DOIUrl":null,"url":null,"abstract":"ABSTRACT Industry 4.0 refers to a new generation of connected and intelligent factories that is driven by the emergence of new technologies such as artificial intelligence, Cloud computing, Big Data and industrial control systems (ICS) in order to automate all phases of industrial operations. The presence of connected systems in industrial environments poses a considerable security challenge, moreover with the huge amount of data generated daily, there are complex attacks that occur in seconds and target production lines and their integrity. But, until now, factories do not have all the necessary tools to protect themselves, they mainly use traditional protection. In order to improve industrial control systems in terms of efficiency and response time, the present paper propose a new distributed intrusion detection approach using artificial intelligence methods, Big Data techniques and deployed in a cloud environment. A variety of Machine Learning and Deep Learning algorithms, basically convolutional neural networks (CNN), have been tested to compare performance and choose the most suitable model for the classification. We test the performance of our model by using the industrial dataset SWat.","PeriodicalId":32180,"journal":{"name":"Journal of Information and Telecommunication","volume":"1 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24751839.2023.2239617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Industry 4.0 refers to a new generation of connected and intelligent factories that is driven by the emergence of new technologies such as artificial intelligence, Cloud computing, Big Data and industrial control systems (ICS) in order to automate all phases of industrial operations. The presence of connected systems in industrial environments poses a considerable security challenge, moreover with the huge amount of data generated daily, there are complex attacks that occur in seconds and target production lines and their integrity. But, until now, factories do not have all the necessary tools to protect themselves, they mainly use traditional protection. In order to improve industrial control systems in terms of efficiency and response time, the present paper propose a new distributed intrusion detection approach using artificial intelligence methods, Big Data techniques and deployed in a cloud environment. A variety of Machine Learning and Deep Learning algorithms, basically convolutional neural networks (CNN), have been tested to compare performance and choose the most suitable model for the classification. We test the performance of our model by using the industrial dataset SWat.
基于大数据技术和迁移学习的工业控制系统入侵检测分布式深度学习方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
18
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信