Integrated Approach for Estimating Extreme Hydrodynamic Loads on Elevated Pile Cap Foundation using Environmental Contour of Simulated Typhoon Wave, Current and Surge Conditions
{"title":"Integrated Approach for Estimating Extreme Hydrodynamic Loads on Elevated Pile Cap Foundation using Environmental Contour of Simulated Typhoon Wave, Current and Surge Conditions","authors":"Kai Wei, Daimeng Shang, Xi Zhong","doi":"10.1115/1.4056037","DOIUrl":null,"url":null,"abstract":"\n Typhoon is a disastrous weather system, which usually induces strong waves, currents, and surges along the coastal area, and causes severe hydrodynamic loads on the elevated pile cap foundation, which is widely used to support the sea-crossing bridge. Estimating the hydrodynamic loads under typhoons is essential to ensure the bridge's safety. This paper develops an environmental contour-based framework that can estimate the extreme hydrodynamic loads induced by typhoons while considering the correlation among environmental conditions. The elevated pile cap foundation of the Xihoumen Rail-cum-road Bridge was used to illustrate the framework. The SWAN+ADCIRC model was employed to simulate the environmental conditions under typhoons. The pair-copulas were adopted to construct joint probability distributions, and the environmental contours with a given return period were then established by the inverse first-order reliability method. Given the hydrodynamic model and short-term peak value of structural response, the AK-LHS method was then used to find the maximum hydrodynamic loads based on the environmental contours. The environmental contour constructing methods, and selection methods of short-term peak values were compared and discussed. The main findings include: 1) ignoring correlations of the environmental conditions overestimates the extreme hydrodynamic loads and results in a conservative design; 2) the estimation of extreme hydrodynamic loads is affected by the selection and fitting of short-term peak values significantly; and 3) the extreme hydrodynamic loads estimated by either Rosenblatt or Nataf transformation shows similar results.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056037","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Typhoon is a disastrous weather system, which usually induces strong waves, currents, and surges along the coastal area, and causes severe hydrodynamic loads on the elevated pile cap foundation, which is widely used to support the sea-crossing bridge. Estimating the hydrodynamic loads under typhoons is essential to ensure the bridge's safety. This paper develops an environmental contour-based framework that can estimate the extreme hydrodynamic loads induced by typhoons while considering the correlation among environmental conditions. The elevated pile cap foundation of the Xihoumen Rail-cum-road Bridge was used to illustrate the framework. The SWAN+ADCIRC model was employed to simulate the environmental conditions under typhoons. The pair-copulas were adopted to construct joint probability distributions, and the environmental contours with a given return period were then established by the inverse first-order reliability method. Given the hydrodynamic model and short-term peak value of structural response, the AK-LHS method was then used to find the maximum hydrodynamic loads based on the environmental contours. The environmental contour constructing methods, and selection methods of short-term peak values were compared and discussed. The main findings include: 1) ignoring correlations of the environmental conditions overestimates the extreme hydrodynamic loads and results in a conservative design; 2) the estimation of extreme hydrodynamic loads is affected by the selection and fitting of short-term peak values significantly; and 3) the extreme hydrodynamic loads estimated by either Rosenblatt or Nataf transformation shows similar results.
期刊介绍:
The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events.
Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.