The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xiuwei Yin, Guangjun Shen, Jiang-Lun Wu
{"title":"The exponential behavior and stabilizability of quasilinear parabolic stochastic partial differential equation","authors":"Xiuwei Yin, Guangjun Shen, Jiang-Lun Wu","doi":"10.1142/s0219530521500172","DOIUrl":null,"url":null,"abstract":"In this paper, we study the stability of quasilinear parabolic stochastic partial differential equations with multiplicative noise, which are neither monotone nor locally monotone. The exponential mean square stability and pathwise exponential stability of the solutions are established. Moreover, under certain hypothesis on the stochastic perturbations, pathwise exponential stability can be derived, without utilizing the mean square stability.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530521500172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we study the stability of quasilinear parabolic stochastic partial differential equations with multiplicative noise, which are neither monotone nor locally monotone. The exponential mean square stability and pathwise exponential stability of the solutions are established. Moreover, under certain hypothesis on the stochastic perturbations, pathwise exponential stability can be derived, without utilizing the mean square stability.
拟线性抛物型随机偏微分方程的指数行为与稳定性
本文研究了一类既非单调又非局部单调的拟线性抛物型随机偏微分方程的稳定性。建立了解的指数均方稳定性和路径指数稳定性。此外,在随机扰动的一定假设下,可以导出路径指数稳定性,而不需要使用均方稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信