Haijie Wang, P. Jiang, Rongrong Zhang, Jiahui Zhao, W. Si, Yong Fang, Nana Zhang
{"title":"The changing precipitation storm properties under future climate change","authors":"Haijie Wang, P. Jiang, Rongrong Zhang, Jiahui Zhao, W. Si, Yong Fang, Nana Zhang","doi":"10.2166/nh.2023.142","DOIUrl":null,"url":null,"abstract":"\n Changes in precipitation storm characteristics especially extreme precipitation events have been frequently reported during recent years, which poses great challenges for flood controls of reservoir basins. In this study, we present a comprehensive examination on the evolution of storm properties during two distinct rainy seasons in Changtan Reservoir Basin located on the southeastern coast of China. We compare the differences in storm duration, inter-storm period, the average storm intensity, and with-in storm pattern between the Meiyu flood season (MFS) and typhoon flood season (TFS). We also explore the future projections of these storm properties based on Coupled Model Inter-comparison Project 6 (CMIP6) precipitation outputs. Our results indicate that precipitation storms in TFS exhibit shorter duration and higher average storm intensity than those of MFS, the flood risk in June is mainly due to accumulative precipitation (longer duration), while in July to September, is mainly due to the storms with high intensity. The projected precipitation shows uncertainties for different emission scenarios, especially during TFS. However, the increasing trend of the average storm intensity is relatively consistent, which is supposed to bring more pressure on flood control in the study area. The results can provide a beneficial reference to water resources management.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2023.142","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1
Abstract
Changes in precipitation storm characteristics especially extreme precipitation events have been frequently reported during recent years, which poses great challenges for flood controls of reservoir basins. In this study, we present a comprehensive examination on the evolution of storm properties during two distinct rainy seasons in Changtan Reservoir Basin located on the southeastern coast of China. We compare the differences in storm duration, inter-storm period, the average storm intensity, and with-in storm pattern between the Meiyu flood season (MFS) and typhoon flood season (TFS). We also explore the future projections of these storm properties based on Coupled Model Inter-comparison Project 6 (CMIP6) precipitation outputs. Our results indicate that precipitation storms in TFS exhibit shorter duration and higher average storm intensity than those of MFS, the flood risk in June is mainly due to accumulative precipitation (longer duration), while in July to September, is mainly due to the storms with high intensity. The projected precipitation shows uncertainties for different emission scenarios, especially during TFS. However, the increasing trend of the average storm intensity is relatively consistent, which is supposed to bring more pressure on flood control in the study area. The results can provide a beneficial reference to water resources management.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.