Non-Lebesgue measurability of finite unions of Vitali selectors related to different groups

Pub Date : 2021-11-30 DOI:10.7146/math.scand.a-128969
Venuste Nyagahakwa, Gratien Haguma
{"title":"Non-Lebesgue measurability of finite unions of Vitali selectors related to different groups","authors":"Venuste Nyagahakwa, Gratien Haguma","doi":"10.7146/math.scand.a-128969","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that each topological group isomorphism of the additive topological group $(\\mathbb{R},+)$ of real numbers onto itself preserves the non-Lebesgue measurability of Vitali selectors of $\\mathbb{R}$. Inspired by Kharazishvili's results, we further prove that each finite union of Vitali selectors related to different countable dense subgroups of $(\\mathbb{R}, +)$, is not measurable in the Lebesgue sense. From here, we produce a semigroup of sets, for which elements are not measurable in the Lebesgue sense. We finally show that the produced semigroup is invariant under the action of the group of all affine transformations of $\\mathbb{R}$ onto itself.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-128969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we prove that each topological group isomorphism of the additive topological group $(\mathbb{R},+)$ of real numbers onto itself preserves the non-Lebesgue measurability of Vitali selectors of $\mathbb{R}$. Inspired by Kharazishvili's results, we further prove that each finite union of Vitali selectors related to different countable dense subgroups of $(\mathbb{R}, +)$, is not measurable in the Lebesgue sense. From here, we produce a semigroup of sets, for which elements are not measurable in the Lebesgue sense. We finally show that the produced semigroup is invariant under the action of the group of all affine transformations of $\mathbb{R}$ onto itself.
分享
查看原文
与不同群体相关的Vitali选择器有限联合的非勒贝格可测性
本文证明了实数的可加拓扑群$(\mathbb{R},+)$在其自身上的每个拓扑群同构都保持了$\mathbb{R}$的Vitali选择器的非Lebesgue可测性。受Kharazishvili结果的启发,我们进一步证明了与$(\mathbb{R},+)$的不同可数稠密子群相关的Vitali选择器的每个有限并集在Lebesgue意义上是不可测量的。从这里,我们产生了一个集合的半群,其中的元素在Lebesgue意义上是不可测量的。最后,我们证明了生成的半群在$\mathbb{R}$到其自身的所有仿射变换的群的作用下是不变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信