M. Khalil, R. Félix-Gastélum, O. Peñuelas-Rubio, Leandris Argentel-Martínez, I. Maldonado-Mendoza
{"title":"Rhizospheric bacteria for use in preventing Fusarium wilt and crown root rot of tomato under natural field conditions","authors":"M. Khalil, R. Félix-Gastélum, O. Peñuelas-Rubio, Leandris Argentel-Martínez, I. Maldonado-Mendoza","doi":"10.1080/07060661.2022.2087104","DOIUrl":null,"url":null,"abstract":"Abstract Biocontrol, an alternative to chemical control against plant pathogens, may also improve plant health and enhance fruit yield. Tomato production in open fields or greenhouses is constrained by the pathogens Fusarium oxysporum f. sp. lycopersici race 3 (Fol R3) and F. oxysporum f. sp. radicis-lycopersici (Forl). In this work, we studied the biocontrol effect of the antagonistic bacteria Acinetobacter calcoaceticus AcDB3, Bacillus thuringiensis BtMB9, B. subtilis BsTA16, and B. amyloliquefaciens BaMA26 in field trials with four tomato hybrids over two consecutive growing seasons (2019–2020 and 2020–2021). The effect of these bacteria on plant growth was also evaluated. The presence of F. oxysporum in field soil and/or infected plants was confirmed microbiologically. All four bacterial strains significantly suppressed the severity of Fusarium crown and root rot of tomato (FCRRT) and Fusarium wilt symptoms, as well as increased tomato yield under field conditions. Among the four strains, B. subtilis BsTA16 showed the highest reduction in symptoms of Fusarium wilt (68%) and FCRRT (74%). To the best of our knowledge, this is the first report of biological control agents (BCAs) exerting antagonistic activity against both FCRRT caused by Forl and Fusarium wilt caused by Fol in tomato under field conditions.","PeriodicalId":9468,"journal":{"name":"Canadian Journal of Plant Pathology","volume":"44 1","pages":"836 - 848"},"PeriodicalIF":1.6000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/07060661.2022.2087104","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Biocontrol, an alternative to chemical control against plant pathogens, may also improve plant health and enhance fruit yield. Tomato production in open fields or greenhouses is constrained by the pathogens Fusarium oxysporum f. sp. lycopersici race 3 (Fol R3) and F. oxysporum f. sp. radicis-lycopersici (Forl). In this work, we studied the biocontrol effect of the antagonistic bacteria Acinetobacter calcoaceticus AcDB3, Bacillus thuringiensis BtMB9, B. subtilis BsTA16, and B. amyloliquefaciens BaMA26 in field trials with four tomato hybrids over two consecutive growing seasons (2019–2020 and 2020–2021). The effect of these bacteria on plant growth was also evaluated. The presence of F. oxysporum in field soil and/or infected plants was confirmed microbiologically. All four bacterial strains significantly suppressed the severity of Fusarium crown and root rot of tomato (FCRRT) and Fusarium wilt symptoms, as well as increased tomato yield under field conditions. Among the four strains, B. subtilis BsTA16 showed the highest reduction in symptoms of Fusarium wilt (68%) and FCRRT (74%). To the best of our knowledge, this is the first report of biological control agents (BCAs) exerting antagonistic activity against both FCRRT caused by Forl and Fusarium wilt caused by Fol in tomato under field conditions.
期刊介绍:
Canadian Journal of Plant Pathology is an international journal which publishes the results of scientific research and other information relevant to the discipline of plant pathology as review papers, research articles, notes and disease reports. Papers may be submitted in English or French and are subject to peer review. Research articles and notes include original research that contributes to the science of plant pathology or to the practice of plant pathology, including the diagnosis, estimation, prevention, and control of plant diseases. Notes are generally shorter in length and include more concise research results. Disease reports are brief, previously unpublished accounts of diseases occurring on a new host or geographic region. Review papers include mini-reviews, descriptions of emerging technologies, and full reviews on a topic of interest to readers, including symposium papers. These papers will be highlighted in each issue of the journal and require prior discussion with the Editor-in-Chief prior to submission.