A New Tensor Factorization Based on the Discrete Simplified Fractional Fourier Transform

Q4 Engineering
Xinhua Su, R. Tao
{"title":"A New Tensor Factorization Based on the Discrete Simplified Fractional Fourier Transform","authors":"Xinhua Su, R. Tao","doi":"10.15918/J.JBIT1004-0579.2021.037","DOIUrl":null,"url":null,"abstract":"Tensor analysis approaches are of great importance in various fields such as computation vision and signal processing. Thereinto, the definitions of tensor-tensor product (t-product) and tensor singular value decomposition (t-SVD) are significant in practice. This work presents new t-product and t-SVD definitions based on the discrete simplified fractional Fourier transform (DSFRFT). The proposed definitions can effectively deal with special complex tenors, which further motivates the transform based tensor analysis approaches. Then, we define a new tensor nuclear norm induced by the DSFRFT based t-SVD. In addition, we analyze the computational complexity of the proposed t-SVD, which indicates that the proposed t-SVD can improve the computational efficiency.","PeriodicalId":39252,"journal":{"name":"Journal of Beijing Institute of Technology (English Edition)","volume":"30 1","pages":"274-279"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Beijing Institute of Technology (English Edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15918/J.JBIT1004-0579.2021.037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Tensor analysis approaches are of great importance in various fields such as computation vision and signal processing. Thereinto, the definitions of tensor-tensor product (t-product) and tensor singular value decomposition (t-SVD) are significant in practice. This work presents new t-product and t-SVD definitions based on the discrete simplified fractional Fourier transform (DSFRFT). The proposed definitions can effectively deal with special complex tenors, which further motivates the transform based tensor analysis approaches. Then, we define a new tensor nuclear norm induced by the DSFRFT based t-SVD. In addition, we analyze the computational complexity of the proposed t-SVD, which indicates that the proposed t-SVD can improve the computational efficiency.
基于离散简化分数阶傅里叶变换的张量分解方法
张量分析方法在计算视觉和信号处理等领域具有重要意义。其中,张量张量乘积(t-product)和张量奇异值分解(t-SVD)的定义在实践中具有重要意义。本文在离散简化分数傅立叶变换(DSFRFT)的基础上提出了新的t-乘积和t-SVD定义。所提出的定义可以有效地处理特殊的复张量,这进一步推动了基于变换的张量分析方法。然后,我们定义了一个新的张量核范数,该范数是由基于DSFRFT的t-SVD导出的。此外,我们还分析了所提出的t-SVD的计算复杂性,这表明所提出的t-SVD可以提高计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
2437
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信