Yang Zhang , Jun Yue , Aihuan Song , Shixiang Jia , Zhenbo Li
{"title":"A High-similarity shellfish recognition method based on convolutional neural network","authors":"Yang Zhang , Jun Yue , Aihuan Song , Shixiang Jia , Zhenbo Li","doi":"10.1016/j.inpa.2022.05.009","DOIUrl":null,"url":null,"abstract":"<div><p>The high similarity of shellfish images and unbalanced samples are key factors affecting the accuracy of shellfish recognition. This study proposes a new shellfish recognition method FL_Net based on a Convolutional Neural Network (CNN). We first establish the shellfish image (SI) dataset with 68 species and 93 574 images, and then propose a filter pruning and repairing model driven by an output entropy and orthogonality measurement for the recognition of shellfish with high similarity features to improve the feature expression ability of valid information. For the shellfish recognition with unbalanced samples, a hybrid loss function, including regularization term and focus loss term, is employed to reduce the weight of easily classified samples by controlling the shared weight of each sample species to the total loss. The experimental results show that the accuracy of shellfish recognition of the proposed method is 93.95%, 13.68% higher than the benchmark network (VGG16), and the accuracy of shellfish recognition is improved by 0.46%, 17.41%, 17.36%, 4.46%, 1.67%, and 1.03% respectively compared with AlexNet, GoogLeNet, ResNet50, SN_Net, MutualNet, and ResNeSt, which are used to verify the efficiency of the proposed method.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"10 2","pages":"Pages 149-163"},"PeriodicalIF":7.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317322000555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The high similarity of shellfish images and unbalanced samples are key factors affecting the accuracy of shellfish recognition. This study proposes a new shellfish recognition method FL_Net based on a Convolutional Neural Network (CNN). We first establish the shellfish image (SI) dataset with 68 species and 93 574 images, and then propose a filter pruning and repairing model driven by an output entropy and orthogonality measurement for the recognition of shellfish with high similarity features to improve the feature expression ability of valid information. For the shellfish recognition with unbalanced samples, a hybrid loss function, including regularization term and focus loss term, is employed to reduce the weight of easily classified samples by controlling the shared weight of each sample species to the total loss. The experimental results show that the accuracy of shellfish recognition of the proposed method is 93.95%, 13.68% higher than the benchmark network (VGG16), and the accuracy of shellfish recognition is improved by 0.46%, 17.41%, 17.36%, 4.46%, 1.67%, and 1.03% respectively compared with AlexNet, GoogLeNet, ResNet50, SN_Net, MutualNet, and ResNeSt, which are used to verify the efficiency of the proposed method.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining