Isolation of glia from mice

Q4 Biochemistry, Genetics and Molecular Biology
S. Derouiche
{"title":"Isolation of glia from mice","authors":"S. Derouiche","doi":"10.37212/JCNOS.584618","DOIUrl":null,"url":null,"abstract":"Glia constitutes a heterogeneous cell population that makes up half of the cells in the central nervous system (CNS). Glial cells include macroglia, astrocytes and oligodendrocytes, and microglia. Their roles are very diverse but overall they orchestrate CNS formation and function by providing neurons with essential support. Although glia-derived immortalized cell lines are now available, primary cultures of glial cells still constitute the most reliable method to study glial functions as the primary cultures retain important characteristics and markers of glia from their normal brain environment. Isolation and culturing of glia from postnatal rodent brain is well-characterized and give higher yield than from adult brain. Therefore, isolation of glial cells from postnatal mouse brains, with an emphasis on microglia, will be described. It will include a protocol describing the steps of isolation and necessary equipments and reagents, as well as the subsequent cell culture monitoring and potential applications.","PeriodicalId":37782,"journal":{"name":"Journal of Cellular Neuroscience and Oxidative Stress","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Neuroscience and Oxidative Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37212/JCNOS.584618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

Abstract

Glia constitutes a heterogeneous cell population that makes up half of the cells in the central nervous system (CNS). Glial cells include macroglia, astrocytes and oligodendrocytes, and microglia. Their roles are very diverse but overall they orchestrate CNS formation and function by providing neurons with essential support. Although glia-derived immortalized cell lines are now available, primary cultures of glial cells still constitute the most reliable method to study glial functions as the primary cultures retain important characteristics and markers of glia from their normal brain environment. Isolation and culturing of glia from postnatal rodent brain is well-characterized and give higher yield than from adult brain. Therefore, isolation of glial cells from postnatal mouse brains, with an emphasis on microglia, will be described. It will include a protocol describing the steps of isolation and necessary equipments and reagents, as well as the subsequent cell culture monitoring and potential applications.
小鼠神经胶质细胞的分离
胶质瘤是一种异质性细胞群,占中枢神经系统(CNS)细胞的一半。胶质细胞包括大胶质细胞、星形胶质细胞和少突胶质细胞以及小胶质细胞。它们的作用非常多样,但总的来说,它们通过为神经元提供必要的支持来协调中枢神经系统的形成和功能。尽管现在可以获得神经胶质来源的永生化细胞系,但神经胶质细胞的原代培养仍然是研究神经胶质功能的最可靠方法,因为原代培养保留了正常脑环境中神经胶质的重要特征和标志物。从出生后的啮齿类动物大脑中分离和培养胶质细胞具有良好的特性,并且比从成年大脑中获得更高的产量。因此,将描述从出生后的小鼠大脑中分离神经胶质细胞,重点是小胶质细胞。它将包括一份协议,描述分离步骤和必要的设备和试剂,以及随后的细胞培养监测和潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cellular Neuroscience and Oxidative Stress
Journal of Cellular Neuroscience and Oxidative Stress Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
1.10
自引率
0.00%
发文量
8
期刊介绍: Journal of Cellular Neuroscience and Oxidative Stress isan online journal that publishes original research articles, reviews and short reviews on themolecular basisofbiophysical,physiological and pharmacological processes thatregulate cellular function, and the control or alteration of these processesby theaction of receptors, neurotransmitters, second messengers, cation, anions,drugsor disease. Areas of particular interest are four topics. They are; 1. Ion Channels (Na+-K+Channels, Cl– channels, Ca2+channels, ADP-Ribose and metabolism of NAD+,Patch-Clamp applications) 2. Oxidative Stress (Antioxidant vitamins, antioxidant enzymes, metabolism of nitric oxide, oxidative stress, biophysics, biochemistry and physiology of free oxygen radicals) 3. Interaction Between Oxidative Stress and Ion Channels in Neuroscience (Effects of the oxidative stress on the activation of the voltage sensitive cation channels, effect of ADP-Ribose and NAD+ on activation of the cation channels which are sensitive to voltage, effect of the oxidative stress on activation of the TRP channels in neurodegenerative diseases such Parkinson’s and Alzheimer’s diseases) 4. Gene and Oxidative Stress (Gene abnormalities. Interaction between gene and free radicals. Gene anomalies and iron. Role of radiation and cancer on gene polymorphism)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信